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Foreword

The International Workshop on Spoken Language Translation (IWSLT) is an annually
scientific workshop, associated with an open evaluation campaign on Spoken Language
Translation, where both scientific papers and system descriptions are presented.

Since 2004, the annual workshop has been held six times in Asia, five times in
America, and three times in Europe. This year, the 15th International Workshop on
Spoken Language Translation is hosted Europe, in awesome Bruges, Belgium from
29th to 30th October 2018. The reason was to co-locate IWSLT with other two impor-
tant and related conferences: the Conference on Machine Translation (WMT) and the
Conference on Empirical Methods for Natural Language Processing (EMNLP), both
taking place in Brussels, after IWSLT.

The IWSLT workshop includes presentations of scientific papers in dedicated tech-
nical sessions, either in oral or poster form. Scientific papers cover theoretical and
practical issues in the field of machine translation, spoken language translation, au-
tomatic speech recognition, text-to-speech synthesis. This year, we received 26 sub-
missions of scientific papers, which were carefully peer-reviewed by members of the
program committee. Out of them, 12 were selected for publication based on their tech-
nical merit and relevance to the workshop. The proceedings of IWSLT are published
on the workshop website.

As in the past editions, IWSLT will assign a best student paper award for which
this year we have selected two finalists that will give an oral presentation of their work.

The workshop will also include the presentation and discussion of the outcomes
of the 2018 IWSLT evaluation campaign, which this year focused on two tasks: low
resource machine translation of TED Talks from Basque to English, and speech trans-
lation of lectures from English to German.

The low resource translation task addressed a conventional bilingual text translation
task, but given the difficulty of the proposed translation direction and the scarcity of
available parallel data, we supported the development of deep learning models also
leveraging parallel data from related languages.

The speech translation task also introduced several novel aspects with respect to
the past, which pushed participants to go beyond the usual pipeline approach of cas-
cading automatic speech recognition and machine translation. First, this year we only
evaluated end-to-end performance, so that every participant had to generate German
translations based on the English audio. Second, for participants who wanted to fo-
cus on one component of the pipeline, we provided baseline components for the other
parts. Third, we introduced a special evaluation condition to test end-to-end models,
namely deep learning models directly mapping source language speech into target lan-
guage text. For this condition, we provided an aligned TED corpus of English audio
and German texts.

For each proposed task, monolingual and bilingual language resources, as needed,
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were provided to participants in order to train their systems. Another novelty we intro-
duced this year was to extend the evaluation period from one week to one month, so
that participants could better plan their effort. Blind test sets were released at the begin
of July, and all translation outputs produced by the participants were evaluated using
several automatic translation quality metrics. Finally, each participant was requested
to submit a paper describing his system and the utilized resources. System papers went
through a peer-review process only aiming at improving their overall quality.

The efforts of the organizers were definitely rewarded. The IWSLT evaluation cam-
paign attracted this year 15 research teams, 8 taking part to the low-resource translation
task, and 9 to the speech translation task. The presentations of the corresponding 15
system description papers will be as usual preceded by an overview talk of the evalua-
tion campaign given by one of the organizers.
Before opening the workshop a few words of acknowledgment.
I would like to express my gratitude to the evaluation committee, Jan Niehues, Mauro
Cettolo, Sebastian Stüker, Luisa Bentivogli, and Roldano Cattoni for preparing such a
great playground for the research community. To the program chair Marco Turchi and
all the program committee members for arranging an excellent workshop program. To
Margit Rödder, for taking care of the website and all the local and financial arrange-
ments.

Finally, I would like to thank our generous sponsors for supporting IWSLT. Our
gold sponsors Amazon Web Services and AppTek, and, our silver sponsor M*Modal.
This year sponsors will have the opportunity to give a short corporate presentation
at our workshop, which I’m sure will enrich IWSLT with an industry perspective on
spoken language translation and provide additional networking opportunities in our
community.
I wish all the participants a fruitful and engaging IWSLT workshop!

Welcome to Bruges!

Marcello Federico
Workshop Chair IWSLT 2018
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Keynotes

Multimodal Machine Translation
Lucia Specia, Imperial College London/Sheffield University

Abstract
Humans interact with the world through multiple modalities (hearing, vision, etc.).

This is also true when understanding and generating language. Computational mod-
els for language processing, however, are traditionally limited to exploring language
only (spoken or written). In this talk I will cover recent work in the area of multi-
modal machine learning for machine translation, where vision is used as additional
modality, and where the goal is to achieve structured language grounding. I will also
provide an overview on approaches that explore multimodality for language ground-
ing in other sequence to sequence models: automatic speech recognition and spoken
language translation.
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The IWSLT 2018 Evaluation Campaign

J. Niehues(1) R. Cattoni(2) S. Stüker(1) M. Cettolo(2) M. Turchi(2) M. Federico(3)†

(1) KIT - Adenauerring 2, 76131 Karlsruhe, Germany
(2) FBK - Via Sommarive 18, 38123 Trento, Italy
(3) Amazon AI - East Palo Alto, CA 94303, USA

Abstract
The International Workshop of Spoken Language Transla-
tion (IWSLT) 2018 Evaluation Campaign featured two tasks:
low-resource machine translation and speech translation. In
the first task, manually transcribed speech had to be trans-
lated from Basque to English. Since this translation direction
is a under-resourced language pair, participants were encour-
aged to use additional parallel data from related languages.
In the second task, participants had to translate English au-
dio into German text with a full speech-translation system.
In the baseline condition, participants were free to use com-
posite architectures, while in the end-to-end condition they
were restricted to use a single model for the task.

This year, eight research groups took part in the low-
resource machine translation task and nine in the speech
translation task.

1. Introduction
We report here on the outcomes of the 2018 evaluation
campaign organized by the International Workshop of Spo-
ken Language Translation (IWSLT). The IWSLT workshop
started in 2004 [1] with the purpose of enabling the exchange
of knowledge among researchers working on speech trans-
lation and creating an opportunity to develop and compare
translation systems on a common test bed. The evaluation
campaign built on one of the outcomes of the C-STAR (Con-
sortium for Speech Translation Advanced Research) project,
namely the BTEC (Basic Travel Expression Corpus) multi-
lingual spoken language corpus [2], which initially served as
a primary source of evaluation. Since its beginning, transla-
tion tasks of increasing difficulty were offered and new data
sets covering a large number of language pairs were shared
with the research community. In the fifteenth editions orga-
nized from 2004 to 2018, the campaign attracted around 70
different participating teams from all over the world.

Automatic spoken language translation is particularly
challenging for a number of reasons. On one side, machine
translation (MT) systems are required to deal with the spe-
cific features of spoken language. With respect to written
language, speech is structurally less complex, formal and
fluent. It is also characterized by shorter sentences with a

† Work performed while the author was at FBK, Italy.

lower amount of rephrasing but a higher pronoun density [3].
On the other side, speech translation [4] requires the integra-
tion of MT with automatic speech recognition, which brings
with it the additional difficulty of translating content that may
have been corrupted by speech recognition errors.

Along the years, three main evaluation tracks were pro-
gressively introduced, addressing all the core technologies
involved in the spoken language translation task, namely:

• Automatic speech recognition (ASR), i.e. the conver-
sion of a speech signal into a transcript

• Machine translation (MT), i.e. the translation of a pol-
ished transcript into another language

• Spoken language translation (SLT), i.e. the conversion
and translation of a speech signal into a transcript in
another language

In previous years, the ASR transcript was provided to the
participants of the SLT task. Therefore, the SLT task main fo-
cus on investigating translation methods for automatic tran-
scripts.

The recent development in deep learning lead to the us-
age of similar techniques in machine translation and au-
tomatic speech recognition. Furthermore, the success of
sequence-to-sequence model allowed the development of
end-to-end speech translation systems [5]. Therefore, in this
years edition, we drooped the ASR task and included the
transcription of the audio into the SLT task. Hence, for
the first time, participants needed to develop a full speech
translation pipeline and were supplied with audio-text paral-
lel data.

The 2018 IWSLT evaluation focused on translating talks
from two sources of data: translation of TED talks corpus
[6] and, for the speech translation task, university lectures
collected at KIT [7].

The TED translation task of IWSLT has become a sea-
soned task by now. Its introduction was motivated by its
higher complexity with respect to the previous travel tasks,
and by the availability of high quality data. In order to keep
the tasks interesting and to follow current trends in research
and industry, we expanded and developed the IWSLT tasks
further. Motivated by last years success of the multi-lingual
machine translation task, we created task on a low resources

2

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018



language pair. Furthermore, we developed the speech trans-
lation task further. Participants need to build a complete
speech translation system and we encourage research on end-
to-end models. Unlike in previous years, we also limited the
scope of the evaluation to very few languages. The main
reason for this was to avoid dispersion of participants in too
many tasks.

The translation directions considered this year were En-
glish to German for SLT task were English to German and
Basque to English for low-resource MT task.

For all tasks, permissible training data sets were specified
and instructions for the submissions of test runs were given
together with the detailed evaluation schedule.

All runs submitted by participants were evaluated with
automatic metrics. In particular, for the low-resource MT
task, an evaluation server was set up so that participants
could autonomously score their runs on different dev and test
sets. This year, 15 groups participated in the evaluation (see
Table 1). In the following, we describe each task in more
details and provide in an appendix a detailed report of their
results.

2. Low Resource Machine Translation
2.1. Definition

The Low Resource Translation Task addresses a conven-
tional bilingual text translation task in the domain of the TED
talks. Participants were required to translate TED talks from
Basque to English. Given the difficulty of the proposed trans-
lation direction and the scarcity of available parallel data, ad-
ditional parallel data from related languages were prepared.

Concerning Basque-English data, training set included
64 TED talks with 5.6K parallel sentences (81K Basque and
109K English tokens). Development set contained 10 talks
with 1.1K parallel sentences (17K Basque and 23K English
tokens). The valuation set tst2018 consisted of 10 talks with
1.1K parallel sentences (15K Basque and 20K English to-
kens).

In-domain parallel training data included also talks from
related languages: 73 talks for Basque-French, 74 for
Basque-Spanish, 2595 for French-English, 2589 for Spanish-
French and 2650 for Spanish-English. Moreover, an addi-
tional archive with the original xml files of all the TED talks
available at April 2018 – excluding those in the tst2018 eval-
uation set – was provided. Finally, participants could down-
load any data of the original TED talks from the TED website
– excluding those in the tst2018 evaluation set.

Out-of-domain training data were restricted to parallel
and monolingual corpora (including Basque data) provided
by the OPUS1 and WMT2 organizations on their respec-
tive websites. Moreover, participants were allowed to uti-
lize Basque-Spanish parallel and monolingual data from the

1http://opus.nlpl.eu/
2http://www.statmt.org/wmt18/

Open Data Euskadi Repository kindly provided by the Vi-
comtech3 research center.

In-domain training and development data were supplied
through the website of the WIT3 ([6]), while out-of-domain
training data were made available through the workshop’s
website.

2.2. Evaluation

Automatic translation of the test2018 tst2018 evaluation
set were required to be in NIST XML format with case-
sensitive, detokenized and punctuated texts. Translations
quality was measured automatically by means of the three
automatic standard metrics BLEU, NIST, and TER. Case
sensitive scores were calculated with the software tools
mteval-v13a.pl3 and tercom-0.7.254, by invocating:

• mteval-v13a.pl -c

• java -Dfile.encoding=UTF8 -jar tercom.7.25.jar -N -s

It is worth noticing here that the two scoring scripts apply
their own internal tokenization.

In order to allow participants to evaluate their progresses
automatically and under identical conditions, an evaluation
server was developed. Participants could submit the transla-
tion of the development set to either a REST Webservice or
through a GUI on the web, receiving as output BLEU, NIST
and TER scores computed as described above. The core of
the evaluation server is a shell script wrapping the mteval
and tercom scorers. The REST service is implemented with
a PHP script running over Apache HTTP Server, while the
GUI on the web is written in HTML with AJAX code. The
evaluation server was utilized also by the organizers for the
automatic evaluation of the official submissions. After the
evaluation period, the evaluation on the test2018 set was en-
abled to all participants as well.

2.3. Submissions

We received 15 submissions from 8 different participants (4
participants sent primary submissions only).

2.4. Results

The results on the tst2018 evaluation set for each participant
are shown in Appendix A.1, sorted by the BLEU metric.

3. Speech Translation
3.1. Definition

In contrast to previous years, this year the participants needed
to build the whole speech translation systems. The organizers
did not provide any intermediate results as done in previous
years. Instead, a baseline system was provided [8]. Partici-
pants were free to used parts of this system or purely rely on
the own models.

3http://www.vicomtech.org
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Table 1: List of Participants

ALIBABA Machine Intelligence Technology Lab, Alibaba Group
APPTEC Applications Technology (AppTek), Aachen, Germany
AFRL Air Force Research Laboratory, United States of America
ADAPT ADAPT Centre, Ireland
CUNI Charles University - Institute of Formal and Applied Linguistics, Czechia
FBK Fondazione Bruno Kessler, Italy
HY University of Helsinky, Finland
JHU Johns Hopkins University, Baltimore, USA
KIT Karlsruhe Institute of Technology, Germany
MEMAD Department of Digital Humanities / HELDIG University of Helsinki, Finland

Department of Signal Processing and Acoustics Aalto University, Finland
PROMPSIT Prompsit Language Engineering, Spain
SGNLP NLP Laboratory in Sogang University, South Korea
SRPOL-UEDIN Samsung R&D Institute Poland and University of Edinburgh, Poland/UK
TIIC Voice Interaction Technology Center, Sogou Inc., Beijing, China

Tiangong Institute for Intelligent Computing, Tsinghua University, Beijing, China
USTC-NEL University of Science and Technology of China and IFLYTEK Co. LTD.

This year edition of the speech translation task contained
two different conditions. In the first condition Baseline, the
participants could use any architecture to generate the trans-
lations in the target language. The second condition End-
to-End concentrated on end-to-end models. In this condi-
tion, participants need to train one large model to perform
the whole process from source language audio to target lan-
guage text.

In both tasks the same test data is used. The test data is
English audio and needs to be translated into German. The
test data consisted of two related types of data. One part
of the training data are TED talks. These talks are well-
prepared and address a broad audience. Therefore, they con-
tain only very few disfluencies and contain only very few
special terms. The second part of the test sets contain uni-
versity talks and research presentations. Since the talks are
targeted to a small target audience, the test sets contain more
special terms.

For training the system, different data sources were pro-
vided to the participants. For training the ASR components,
the TED LIUM corpus could be used [9]. For the training of
the machine translation component, the data available form
the WMT evaluation4 was allowed. In addition, the orga-
nizers provide the WIT corpus []. Furthermore, for the first
time, also a corpus to train the end-to-end corpus was pro-
vided. This corpus consists of English TED talks aligned
with their German transcription5.

3.2. Evaluation

Since the audio was not segmented by a human into sentence-
like units, the generated translation were segmented into
different sentences than reference transcript and translation.

4https://www.statmt.org/wmt18/
5http://i13pc106.ira.uka.de/ mmueller/iwslt-corpus.zip

Therefore, in a first step of the evaluation we need to realign
the sentences of the reference and the automatic translation.
This was done by minimizing the WER between the auto-
matic translation and reference as described in [10]. Two
segmentation were generated, one used case information for
the case-sensitive metrics and one using no case information
for the case-insensitive metrics.

Using the resegmented input, we used 4 different metrics
to evaluate the results. For BLEU [11] and TER[12], we cal-
culated case-sensitive and case-insensitive scores. In addi-
tion, we calculated the BEER score [13] and the characTER
[14].

3.3. Submissions

In total we received 27 submissions from 9 partners. We
received 7 primary submissions in the baseline condition and
4 primary submissions in the end-to-end submission. Two
participants submitted output to both conditions. The results
of all primary submissions are summarized in Appendix A.1.

3.4. Results

The detailed results of the automatic evaluation in terms of
BLEU, TER, BEER and characTER can be found in Ap-
pendix A.1.

4. Conclusions
We reported results of the 2018 IWSLT Evaluation Cam-
paign which featured two tasks: the translation of TED talks
from Basque to English and the speech translation task from
English to German. In the second one, the test set contains
TED talks as well as university lectures and research talks.
In this task, two tracks were offered: a baseline condition
and the end-to-end condition. In total, 14 international re-
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search groups joined the evaluation campaign. For the first
time, traditional pipeline approaches for speech translation
were compared to end-to-end translation models.
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Appendix A. Automatic Evaluation
A.1. Official Testset (tst2018)

· All the sentence IDs in the IWSLT 2018 testset were used to calculate the automatic scores for each run submission.
· MT systems are ordered according to the BLEU metrics.
· WER, BLEU and TER scores are given as percent figures (%).

Low Resource MT : Basque-English
System BLEU NIST TER

SRPOL-UEDIN 26.21 6.51 59.49
HY 25.01 6.45 59.48
PROMPSIT 24.02 6.24 60.81
FBK 23.99 6.34 59.43
CUNI 22.86 6.10 60.31
ADAPT 13.89 4.46 69.98
AFRL 12.25 4.03 80.63
SGNLP 10.42 3.49 103.96

Speech Translation : English-German
System BLEU TER BEER characTER BLEU(CI) TER(CI) #Words

Baseline condition
TIIC 28.09 55.74 54.73 84.72 29.44 53.73 39611
USTC-NEL 26.47 58.03 52.69 92.24 27.86 55.98 38372
ALIBABA 22.36 63.03 51.77 69.26 24.23 60.22 39751
APPTEC 21.45 64.12 51.56 63.47 22.72 61.69 41210
KIT 19.44 67.94 50.61 58.16 20.78 65.52 42128
AFRL 17.24 69.10 49.23 64.27 18.37 66.78 41155
MEMAD 15.8 74.51 47.01 82.56 17.13 72.00 41848

End-to-End condition
USTC-NEL 19.4 68.20 48.77 87.30 20.77 65.73 41372
FBK 10.24 78.20 40.68 129.47 11.16 76.38 36627
KIT 8.4 88.54 41.48 80.38 9.22 86.55 44155
JHU 5.45 89.59 35.46 99.89 6.09 88.20 40932

Speech Translation TED Only : English-German
System BLEU TER BEER characTER BLEU(CI) TER(CI)

TIIC 28.18 57.31 52.74 61.06 29.36 55.65
USTC-NEL 26.79 59.89 51.28 92.50 27.89 58.23
ALIBABA 22.77 63.66 50.62 65.54 24.57 60.96
APPTEC 21.05 66.31 49.96 60.96 22.17 64.20
KIT 18.84 69.05 48.73 57.97 20.02 66.92
AFRL 15.46 72.23 47.26 61.02 16.51 70.06
MEMAD 15.57 74.83 45.35 87.54 16.8 72.56

End-to-End condition
USTC-NEL 18.32 70.50 46.65 88.73 19.58 68.36
FBK 9.75 77.57 38.98 150.35 10.57 75.95
KIT 7.99 86.68 39.55 86.36 8.82 84.76
JHU 4.51 85.84 32.71 112.77 4.97 84.63

Speech Translation Lecture Only : English-German
System BLEU TER BEER characTER BLEU(CI) TER(CI)

TIIC 27.55 54.25 57.43 117.57 29.06 51.89
USTC-NEL 25.95 56.24 54.59 91.89 27.6 53.82
ALIBABA 21.77 62.42 53.30 74.42 23.68 59.52
APPTEC 21.84 62.03 53.73 66.96 23.28 59.28
KIT 20.01 66.88 53.16 58.43 21.5 64.18
AFRL 18.94 66.12 51.92 68.77 20.13 63.65
MEMAD 16.01 74.20 49.25 75.65 17.44 71.46

End-to-End condition
USTC-NEL 20.41 66.00 51.67 85.31 21.87 63.22
FBK 10.7 78.81 42.99 100.49 11.7 76.79
KIT 8.76 90.32 44.11 72.07 9.58 88.26
JHU 5.84 93.18 39.24 82.03 6.58 91.60
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Abstract

Mining parallel sentences from comparable corpora is of
great interest for many downstream tasks. In the BUCC
2017 shared task, systems performed well by training on
gold standard parallel sentences. However, we often want
to mine parallel sentences without bilingual supervision. We
present a simple approach relying on bilingual word embed-
dings trained in an unsupervised fashion. We incorporate or-
thographic similarity in order to handle words with similar
surface forms. In addition, we propose a dynamic thresh-
old method to decide if a candidate sentence-pair is parallel
which eliminates the need to fine tune a static value for differ-
ent datasets. Since we do not employ any language specific
engineering our approach is highly generic. We show that
our approach is effective, on three language-pairs, without
the use of any bilingual signal which is important because
parallel sentence mining is most useful in low resource sce-
narios.

1. Introduction
The ability to extract parallel sentences from monolingual
corpora is of great interest to the field and many approaches
have been proposed [1, 2, 3, 4]. In this paper we explore
ways to mine parallel sentences from monolingual data with-
out bilingual supervision.

Our approach is based on bilingual word embeddings
(BWEs) which represent words from different languages in
the same vector space. While many authors leverage BWEs
for parallel sentence extraction, previous work requires a
strong bilingual signal to either (i) train the BWEs [5] (ii)
train a classifier for sentence-pair extraction [6, 7, 8] or (iii)
for feature engineering [9]. The disadvantage of these ap-
proaches is that the required bilingual signal is not available
for many language pairs which is itself one of the reasons
why parallel sentence extraction is important. In contrast to
these approaches, our method does not need any bilingual
signal. We create BWEs using post-hoc mapping [10] which
allows us to leverage large amounts of (cheap) monolingual
data to train good monolingual word embeddings (MWEs)
which are then mapped into BWEs. We use the method pro-

posed in [11] which combines adversarial training with post-
hoc mapping [12] to learn BWEs without any bilingual sig-
nal. We show that high performance can be achieved using
no parallel sentences nor any bilingual signal.

As a baseline system we produce sentence embeddings
by averaging the word embeddings in the source language
and target language sentences and compare them using co-
sine similarity. One difficult aspect of the task is that not all
source sentences have a parallel target sentence, thus besides
picking the most similar target sentence for a given source
sentence it has to be decided if they are actually parallel. We
propose a dynamic threshold method which calculates a min-
imum similarity value in an unsupervised fashion based on
the input corpus.

Taking the average of the word embeddings in a sentence
tends to give too much weight to irrelevant words [13]. Re-
cently, various word-based sentence similarity metrics were
introduced [14, 15]. The disadvantage of these methods is
either that they are computationally expensive or that they
do not handle irrelevant words. To overcome these issues,
we propose a simple method which efficiently pairs source-
target words while handling irrelevant words, thus making
it feasible to process large datasets. In addition, we consider
an important weakness of BWEs that was shown before [16],
i.e., that they are poor at capturing the translations of named
entities and rare words, showing that this is an important
problem for parallel sentence extraction. We alleviate this
by combining semantic similarities taken from BWEs with
orthographic cues such as Levenshtein distance.

In summary, our contributions are: (i) We evaluate two
approaches for parallel sentence extraction utilizing BWEs,
based on sentence embeddings and word-by-word similari-
ties respectively, which do not need any bilingual signal, in
contrast with previous work. (ii) We introduce a dynamic
threshold method for deciding whether a candidate sentence
pair is parallel. (iii) We incorporate orthographic similarity to
improve performance of parallel sentence extraction. (iv) We
show the generality of our method on the German-English,
French-English and Russian-English comparable corpora of
the BUCC 2017 shared task [17].
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2. Building Bilingual Word Embeddings
In this section we present two different scenarios to build
BWEs. In particular, we use only monolingual datasets to
train MWEs and we map them to the same bilingual space
comparing two methods: the first only needs a small seed
lexicon while the second does not rely on any bilingual sig-
nal.

2.1. Monolingual Word Embeddings

We train MWEs for all 4 languages in our test set. For this we
used monolingual news crawls downloaded between 2011
and 2014 taken from the WMT 2014 shared task [18] con-
taining around 80M, 117M, 31M and 45M sentences for En-
glish, German, French and Russian respectively. We used
FastText skipgram [19] to train MWEs which computes a
distributed representation of words using context and word
structure information in the form of character n-grams. Set-
tings used are: Embedding dimension 300; Minimum occur-
rence frequency 5; Window size 5; Character n-gram sizes
between 3 and 6.

2.2. Bilingual Word Embeddings

Our approach to the task of parallel sentence extraction re-
quires BWEs, which is a common vector space for words
in two different languages. In previous research BWEs
were created either from word-aligned, sentence-aligned or
document-aligned parallel data [20, 21] or by using the cross-
lingual reference to optimize two monolingual spaces, so
called joint training [22, 23, 24]. Similarly to [9] we create
BWEs using post-hoc mapping. First, we explain the basic
idea of post-hoc mapping in the supervised setup and discuss
the way how supervision is eliminated in the unsupervised
method which our approach is based on.

Given two MWEs RdS and RdT post-hoc mapping is per-
formed via a matrix W ∈ RdS×dT which is learned using a
bilingual seed lexicon. Each pair of words (si, ti) in the lex-
icon, with si ∈ Vs and ti ∈ Vt, is projected into ~xi ∈ RdS

and ~yi ∈ RdT . W can be solved by learning a linear mapping
[10]:

W∗ = argmin
W∈RdS×dT

|| XW − Y ||F (1)

where X and Y are obtained by concatenating all projec-
tions ~xi and ~yi of words in the seed lexicon. The authors
of [12] showed that the mapping can be improved by enforc-
ing an orthogonality constraint on W which can be achieved
by solving the singular value decomposition of YXT . To
achieve good performance a seed lexicon of around 5000
word-pairs is used.

W can also be solved without any explicitly bilingual sig-
nal. The system of [11] uses adversarial training i.e. a gener-
ator and discriminator framework to achieve this. The aim of
the discriminator is to distinguish mapped source language
embeddings WX and target language embeddings Y , where

X and Y are sets of embeddings of words coming from the
source and target language. In contrast, the goal of the gener-
ator is to learn W such that it prevents the discriminator from
making accurate predictions. After training, W is used to
automatically extract a seed lexicon of best candidate word
pairs which is used to perform post-hoc mapping with [12].

We use [11] in our fully unsupervised setup. As a con-
trastive experiment we report results with [12] using a seed
lexicon of 5000 word pairs, which was used as a baseline in
[11] as well.

3. Sentence Extraction
We evaluate our model on the shared task data provided by
the BUCC Workshop at ACL 2017. We evaluate our system
on De-En, Fr-En and Ru-En language pairs. The dataset con-
sists of comparable monolingual corpora (Wikipedia dumps)
where the BUCC organizers inserted truly parallel sentences
(taken from News Commentary) into the monolingual data
for each language pair [17]. Our task is to recover the truly
parallel sentences, while minimizing false alarms.

3.1. Sentence Embeddings

We use a basic sentence embedding approach as a baseline.
BWEs are used to embed sentences in both languages into
the same space. Each sentence embedding is computed by
dimension-wise averaging of the embeddings of words in the
given sentence (contained in the BWEs) followed by l2 nor-
malization. Once source and target sentences are embedded,
their similarity can be efficiently computed via cosine simi-
larity [25]. To overcome the issue of giving too much weight
to semantically poor words, which decreases precision and
mistakenly selects non-parallel sentences, we remove stop-
words [26], digits and punctuation from texts before calcu-
lating sentence embeddings. Consider this erroneous exam-
ple, which shows how weighting stop words like a, in, by too
highly causes an erroneous match:

De: Inzwischen sterben mehr Frauen an Gebärmut-
terhalskrebs – alle zwei Minuten eine – als bei einer
Entbindung.

Gloss: Meanwhile die more women from (literal: in)
ovarian cancer – every two minutes one (literal: a) –
than at (literal: by) a birth.

En: For women in the developing world, by contrast,
dying in childbirth is simply a fact of life.

3.2. Dynamic thresholding

To decide whether a candidate sentence pair, i.e., source sen-
tence and its most similar target sentence, is parallel we intro-
duce a method which calculates a minimum similarity value
that the candidate has to meet. We calculate this threshold
value for each test set with a simple formula:
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th = S̄ + λ ∗ std(S) (2)

where S is a set containing the similarity values between
each source sentence in the test set and its most similar target
candidate, S̄ and std(S) are its mean and standard deviation.
We set λ = 2.0 based on the De-En development set which
worked optimally for the other setups as well. The advantage
of this method is that it performed well on all our datasets,
while fine tuning a static threshold value on the development
sets did not achieve good results (see §4) due to the differ-
ence of development and test data. Note also that λ could
be quickly and easily adjusted by the user in order to bal-
ance between quality and quantity for downstream tasks (in
practice inspection of only a few samples is sufficient).

3.3. Bilingual dictionaries

Averaging word embeddings in a sentence tends to give too
much weight to irrelevant words. It was shown that hub
words, which are similar to a high proportion of other words,
have negative effects on performance of embedding based
methods [13]. Word Mover’s Distance was introduced [14],
which is based on the minimum distance that the words in
one text need to “travel” to reach the words in the other text,
to overcome such issues. On the other hand, the approach is
computationally intensive which is not desirable in the case
of parallel sentence extraction due to the high number of can-
didate sentence pairs. Furthermore, it was show that WMD
performs similarly to maximum alignment based methods on
monolingual sentence similarity tasks while the latter is com-
putationally less intensive [15]. We propose an efficient hub
word aware maximum alignment approach based on bilin-
gual dictionaries and show that it is more effective than sim-
ple sentence embeddings. In this method, we perform bilin-
gual lexicon induction on the trained BWEs to generate large
n-best dictionaries, which we then use to mine parallel sen-
tences.

3.3.1. Bilingual lexicon induction

Given a BWE representing two languages Vs and Vt, an n-
best list of translations for each word s ∈ Vs can be induced
by taking the n words ti ∈ Vt whose representation ~xt in the
BWE is closest to the representation ~xs according to cosine
similarity.

From the source side of the comparable data we compute
a list containing the 200,000 most frequent words. For each
word in the list, we retrieve the 100-best translations using
bilingual lexicon induction on the BWEs. Each translation is
given a weight by using cosine similarity computed with the
BWE.

3.3.2. Sentence extraction

Given a candidate pair of source and target sentences S and
T , the similarity score is calculated by iterating over the
words in S from left to right and pair each word s, in a

greedy fashion, with the word t ∈ T that has the highest
similarity based on our dictionary. During iteration, we ig-
nore all t which have been already paired to overcome the
hubness problem, i.e. by preventing the pairing of multiple
source words to the same target word. Then, the averaged
word-pair similarity gives the final score. We apply the same
stopword filtering as before and use dynamic thresholding
for the final decision. Although, we kept our method simple
for computational reasons we use pre-filtering as in previous
work [6]. For each source sentence we only consider the 100
most similar target sentences as candidates based on sentence
embedding similarities. Given a BWE model our method re-
quires around 2.5 hours to process sentences from the De-En
test set (164 billion sentence pairs) on a single thread.

3.3.3. Orthographic similarity

As it was shown in previous work the performance of bilin-
gual lexicon induction can be significantly improved by us-
ing orthographic cues, especially for rare words. We extend
this idea to the sentence level by using a dictionary con-
taining orthographically similar source-target language word
pairs and their similarity1. We define orthographic similarity
as one minus normalized Levenshtein distance. We use this
orthographic dictionary with BWE based dictionary when
mining parallel sentences by using the bigger value from the
two dictionaries. If the given word pair is not in a dictionary
we consider their similarity as 0.0.

4. Results
As we mentioned earlier we evaluate our system on the De-
En, Fr-En and Ru-En data of the BUCC 2017 shared task
[17]. We show results based on BWEs created fully unsu-
pervised with the method of [11] (unsup) and the lightly-
supervised system of [12] (lisup) on the released training sets
as in [8]. Our systems only rely on news crawl monolingual
data and a small seed lexicon in case of the latter thus we did
not use the training set in earlier steps. We will show the per-
formance of our final system and results of previous super-
vised systems on the official test set at the end2. As baseline
we use the sentence embedding system with stopword filter-
ing and dynamic thresholding. We report precision, recall
and F1-scores.

From table 1 it can be seen that the dictionary based
approaches significantly outperform the baseline system for
each language pair. Our systems perform best on Fr-En and
lowest on Ru-En which strongly correlates with the perfor-
mance of the mapping approaches, that was shown in [11],
on bilingual lexicon induction. Even though the baseline per-
forms the weakest it is competitive on French-English with
similar systems [6]. We also ran our baseline system on De-
En with lisup and static threshold value instead of dynamic.

1For speedup we only consider word pairs that have at least 0.8 similarity
2We evaluated on the test set by sending our predictions to the shared

task organizers.
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De-En Fr-En Ru-En
P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

lis
up

sentence-embedding 27.86 18.01 21.88 29.22 14.38 19.28 6.92 4.42 5.39
BWE dict. 23.05 42.29 29.83 38.16 52.19 44.08 16.80 24.77 20.02

BWE+ORT dict. 24.19 45.11 31.49 39.00 52.64 44.80 16.32 24.05 19.45

un
su

p sentence-embedding 26.53 16.40 20.27 28.99 14.07 18.94 6.54 3.84 4.84
BWE dict. 22.67 41.90 29.42 37.97 52.30 44.00 17.31 24.97 20.44

BWE+ORT dict. 23.71 44.57 30.96 39.02 52.61 44.81 16.75 24.20 19.80

Table 1: Results of our proposed systems on the BUCC 2017 shared task’s training set for the 3 language-pairs. Baseline is
the sentence embedding based model with stopword filtering and dynamic tresholding. We underline the best F1 scores for a
language-pair and BWE method and use bolding for the best overall F1 score for a given language-pair.

By fine tuning the value on the development set (achiev-
ing high score) we got only 2.69% F1-score on the training
set showing the importance of dynamic thresholding. Fur-
thermore, in our preliminary experiments we used a shuffled
parallel dataset of parliament proceedings and news articles
for BWEs as in previous work [6]. It showed that having
strongly comparable data could give 5% performance gain
for our setups in average. On the other hand, having access
to such data is unrealistic in real life scenarios, so we don’t
use this data further in our work.

Comparing the dictionary based approaches with and
without the orthographic dictionary it can be seen that the or-
thographic information helped the most for De-En and also
increased performance for Fr-En. In the following example
the incorrect En sentence is about the same topic but orthog-
raphy was needed to extract the sentence with correct enti-
ties:

De: Microsoft hat Nokia Milliarden von Dollar ver-
sprochen, wenn es seine Smartphones exklusiv mit
Windows Phone ausstattet.

En-: In Q1 2008 Samsung shipped 46.3 million mobile
handsets 1Q 2008.

En+: Microsoft promised to pay billions of dollars for
Nokia to use Windows Phone exclusively.

On the other hand, it did not help for Ru-En because of their
different character sets. We manually analyzed the results
and saw that the use of orthographic information gave higher
similarity scores to sentence-pairs that contained named en-
tities with the same orthography. These pairs were correctly
mined without orthography thus no performance increase
was caused. On the other hand, higher similarity scores
caused higher dynamic threshold value thus losing some cor-
rectly mined pairs. This phenomenon can be fixed by better
fine tuning λ for this setup.

Our lisup and unsup systems are on par with each other.
Regarding F1 scores, the seed lexicon caused higher perfor-
mance only for De-En while the unsupervised method per-
formed better for the rest of the language pairs. In figure 1
we show precision-recall curves comparing the two systems
on the three language pairs. This also shows that their perfor-
mance is similar. There is a bigger gap between the systems

P (%) R (%) F1 (%)

D
e-

E
n [27] 88 80 84

lisup BWE+ORT dict. 24 45 32
unsup BWE+ORT dict. 24 45 31

Fr
-E

n [27] 80 79 79
lisup BWE+ORT dict. 39 53 45

unsup BWE+ORT dict. 39 53 45

R
u-

E
n lisup BWE+ORT dict. 16 24 19

unsup BWE+ORT dict. 17 24 20

Table 2: Results on the test set. We show the best performing
supervised system of the shared task [27].

in the case of Ru-En in higher precision ranges in favor of the
unsupervised system. Overall, these results show that good
performance can be achieved in a fully unsupervised man-
ner, i.e., using only monolingual data for training BWEs and
using only these for mining parallel sentence-pairs.

We show negative examples which our unsupervised sys-
tem with orthographic information made on the De-En set in
table 3. Examples 1-3 are incorrectly mined sentence pairs.
In the first case the meaning of the mined pair is very sim-
ilar although it is not parallel while high named entity con-
tent causes the error in the next two. Although names in
example 2 are not orthographically similar they are close in
embedding space which causes the error. Similarly, cardi-
nal directions are different in example 3 but in general they
appear in similar contexts thus get represented similarly in
the word embedding space. In contrast, examples 4-6 have
not been mined by our system. The first two pairs have ex-
tra information on the source side, although they are paral-
lel, which caused error for our system. Example 6 contains
the compound noun Entwicklungsländern (developing coun-
tries) which is not handled by our system.

Finally, we show results on the official shared task test
sets in table 23. For comparison we also include the results of
the best performing supervised system on De-En and Fr-En
[27]. There were no submissions for Ru-En. It can be seen
that the performance of our systems on the test set are very
close to the performance on the training set which we pre-
sented in table 1. This shows that our dynamic threshold ap-
proach, with λ tuned on the De-En development set, is gen-

3Results are rounded for consistency with the shared task paper.
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Figure 1: Precision-recall curves comparing unsup and lisup systems on the three language pairs.

1.
Das Werk wurde außerdem mit vier Academy Awards (Oscars) prämiert, darunter der Trophäe für
den besten fremdsprachigen Film.
In 2011, it was awarded the Academy Award for Best Documentary Feature at the 83rd Academy
Awards.
The work has also received four Academy Awards (Oscars), including the Best Foreign Language
Film Trophy.

2.
Am 7. Juli 1957 wurde Angelas Bruder Marcus, am 19. August 1964 ihre Schwester Irene
geboren.
In April 1976 a daughter, Josina, was born, and in December 1978 a son, Malengane.
On July 7, 1957 Angela’s brother Marcus was born, on August 19, 1964 her sister Irene.

3. Im Osten Serbien, im Südosten Montenegro, sowie im Norden, Westen und Südwesten Kroatien.
It was in the modern Vojvodina (in northern Serbia), northern Croatia and western Hungary.
In east Serbia, southeast Montenegro, as well as in the north, west and southwest Croatia.

4.
Aber die meisten Frauen, die Hillary Clinton wählen sollen, sind nicht Unternehmensjuristinnen
oder Staatssekretärinnen.
But most of the women sought as voters are not corporate attorneys or secretaries of state.
But most women who are to vote for Hillary Clinton are not corporate lawyers or state
secretaries.

5.
Durch diese Kürzungen ging jedoch die Produktion weiter zurück und die wirtschaftliche Misere
verschlimmerte sich nur noch mehr.
As they cut, output fell further and economic misery deepened.
As a result of these cuts, however, production continued to decline and the economic misery
deepened.

6.
Für Frauen in den Entwicklungsländern dagegen ist es ganz normal, bei der Entbindung sterben
zu können.
For women in the developing world, by contrast, dying in childbirth is simply a fact of life.

Table 3: Samples from the manual analysis. 1-3 are incorrectly mined examples (translation of De sentences where differing
from En pair shown in italic) while 4-6 are the missed parallel sentences.
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eral enough to work well on multiple languages and datasets.
Interestingly, the supervised system performed better on De-
En comparing with Fr-En while our approach reached higher
F1 scores on the latter. One reason for this could be the bet-
ter mapping quality of the word embedding space for Fr-En
which was show in [11]. Our results with the fully unsuper-
vised system are lower comparing to the supervised method
since the latter has access to a large parallel corpus during
training. Using parallel data supervised systems can learn
features which help to decide if a sentence pair is parallel,
e.g. word order of a source side phrase in the target side. In
contrast, in the unsupervised case, we can only rely on word
similarity information which can cause errors when syntax is
the deciding factor in the case of a sentence-pair with similar
words. On the other hand, our approach performed well on
this task and will serve as a strong baseline for future unsu-
pervised methods. With our dynamic thresholding method it
is also easy to calculate a good initial threshold value which
can be changed manually by the user in order to balance be-
tween quantity and quality of the mined sentence pairs.

5. Conclusion
In this work we introduced our first steps for the task of un-
supervised parallel sentence extraction. We showed the per-
formance of a simple sentence embedding system based on
unsupervised BWEs and proposed a novel technique for dy-
namically setting the decision threshold. We improved upon
this baseline system by proposing a simple word pair simi-
larity based method which is efficient for large corpora. Fur-
thermore, we addressed the shortcomings of BWEs when
applying them for parallel sentence mining by using ortho-
graphic similarity. We showed that our system works well
for various language pairs where BWEs could be built by
achieving good results on De-En, Fr-En and Ru-En. In ad-
dition, we showed that unsupervised BWEs perform as well
as BWEs based on a small seed lexicon. The goal of this
short work is to provide a strong baseline for the unsuper-
vised parallel sentence extraction task, and we are hoping to
encourage more research on this important problem.
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Abstract
To improve the translation adequacy in neural machine

translation (NMT), we propose a rewarding model with tar-
get word prediction using bilingual dictionaries inspired by
the success of decoder constraints in statistical machine
translation. In particular, the model first predicts a set of tar-
get words promising for translation; then boosts the proba-
bilities of the predicted words to give them better chances
to be output. Our rewarding model minimally interacts
with the decoder so that it can be easily applied to the de-
coder of an existing NMT system. Extensive evaluation
under both resource-rich and resource-poor settings shows
that (1) BLEU score improves more than 10 points with or-
acle prediction, (2) BLEU score improves about 1.0 point
with target word prediction using bilingual dictionaries cre-
ated either manually or automatically, (3) hyper-parameters
of our model are relatively easy to optimize, and (4) under-
generation problem can be alleviated in exchange for increas-
ing over-generated words.

1. Introduction
Neural machine translation (NMT) [1, 2, 3] has dramatically
improved machine translation quality compared to statistical
machine translation (SMT). However, current NMT systems
still suffer from the adequacy problem due to inappropriate
lexical choice, under-generation, and over-generation [4]. In
SMT, bilingual dictionaries have been used to improve ade-
quacy in translation as decoder constraints. Typical example
is the XML markup function implemented on MOSES [5].

Inspired by the decoding constraints for SMT, we pro-
pose a rewarding model using bilingual dictionaries to ad-
dress the adequacy problem in NMT. Our model rewards tar-
get words that are promising to be used in correct translations
by boosting their probabilities to be output by a decoder. It
predicts such target words using bilingual dictionaries that
are created manually or automatically. By applying byte pair
encoding (BPE) [6] to dictionaries, our model can benefit
from both BPE and dictionaries.

While previous studies incorporate bilingual dictionaries
into NMT for translation of rare words [7, 8] and domain-
specific words [9], we do so to improve the adequacy of
NMT. Hence, dictionaries are made use of translating not

only specific types of words but also all words. In addition,
these are methodologically different; our model simply bi-
ases the trained decoder while previous models change the
inside NMT architectures and require training of the entire
systems. Due to this design, our model is easy to add to
trained NMT systems and compatible with BPE.

Extensive evaluation on Japanese-to-English and
English-to-Japanese translation has been conducted using
two datasets; IWSLT (TED Talk) [10], spoken language
domain with a small set of bilingual sentences (223k), and
ASPEC [11], a scientific domain with a large set of bilingual
sentences (3M). We refer to the former as a resource-poor
domain and the latter as a resource-rich domain, hereafter.
The results show that the rewarding model with oracle
prediction of target words, where all and only target words
in references are predicted, BLEU score improves more
than 10 points on average in both of the resource-poor and
resource-rich domains. When using bilingual dictionaries
created manually or automatically in the rewarding model to
predict target words, BLEU scores improve about 1.0 point
on average in both domains.

Detailed analysis of our model reveals that it is relatively
insensitive to settings of its hyper-parameters and easy to op-
timize. In addition, it is shown that our model decreases the
number of under-generated words while tends to increase the
number of over-generated words.

2. Neural Machine Translation
The encoder-decoder model with attention [3, 12] is one
of the most popular architectures in NMT. It takes an in-
put sentence X = {x1, ..., xn} and generates its translation
Y = {y1, ..., ym} as:

p(Y |X; θ) =
m∏

j=1

p(yj |y<j , X; θ),

where θ is a set of parameters and y<j = {y1, · · · , yj−1}.
Given a parallel corpus C = {(X,Y )}, the training objective
minimizes the cross-entropy loss with regard to θ:

Lθ =
∑

(X,Y )∈C

− log p(Y |X).

14

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018



s0 sj+1

yj

!"
#-1

!"
#

!"
#+1

……

… …

Encoder Decoder

xi-1 xi xi+1

sj
…

…x1 x2 xn

Word 
Prediction

Rewarding Model

Softmax layer

Df2e

…

yj-1 yj

$

%"i-1
%"i

%"i+1

Figure 1: Rewarding model at decoding step j: predicted target words Df2e are rewarded to have better chances to be output at
each decoding time step. Note that the attention model is omitted for clarity.

The model consists of three parts, namely, an encoder, a
decoder, and an attention model. The encoder has an embed-
ding layer and an recurrent neural network (RNN) layer. The
former converts words into their continuous space represen-
tations. Taking these embeddings, the RNN layer then com-
putes a state that represents the input sequence till the current
time step. Specifically, we use the bi-directional long short-
term memory (LSTM) [13] that encodes the source sentence
by forward and backward directions. At time step i, the state
is represented by concatenating the forward hidden state ĥi

and the backward one h̃i as hi = [ĥi; h̃i]. In this manner, X
can be represented as h = {h1, ...,hn}.

The decoder remembers all the history of translation
and its softmax layer computes the posterior probability
p(yj |y<j , X) of a word yj to output as translation. In or-
der to focus on specific parts of the input sentence necessary
for translation, the attention model is incorporated. We use
the global attention mechanism proposed in [12].

3. Rewarding Model
On top of a decoder, our model rewards predicted words so
that they have better chances to be output as translations as
shown in Figure 1. Specifically, it first predicts a set of tar-
get words Df2e that are promising to be used in translations
using bilingual dictionaries. Then, our model rewards a tar-
get word if it is contained in Df2e by adding weight to the
posterior probability:

Q(yj |y<j , X) = log p(yj |y<j , X) + λryj
, (1)

where λ is the weight of reward that will be tuned using a de-
velopment set. This means that our model boosts the proba-
bilities of predicted words that might have been slipped away
during beam search in the conventional decoder. In [14], a
similar rewarding model is proposed, but rewards are based
on remaining sequence lengths.

We use a simple binary rewarding in this paper:

ryj
=

{
1 (yj ∈ Df2e),
0 (otherwise).

(2)

We also tried to model the rewarding function using lexi-
cal translation probabilities that can be estimated for auto-
matically created dictionaries. However, preliminary exper-
iments empirically showed that this simple form of reward-
ing worked best. This may be because these probabilities
are modeled in completely different ways, i.e., p(yj |y<j , X)
in Equation (1) is conditioned on the entire source sen-
tence while lexical translation probabilities are conditioned
on source words. Further investigation is our future work.

Finally, a target word is output as:

yj = arg max
yj

Q(yj |y<j , X).

Accurate prediction of Df2e is crucial for our rewarding
model. In the next section, we discuss practical implementa-
tions to obtain Df2e from dictionaries.

4. Target Word Prediction with Dictionaries

In this study, we look up bilingual dictionaries created man-
ually or automatically as word prediction, which allows to
make our model minimally interact with the original NMT
system. We will consider a sophisticated prediction model
using an information in the encoder in future [15].

4.1. Prediction with Manually Created Dictionary

Thanks to the accumulated efforts by the academia and in-
dustry, bilingual dictionaries have been manually created for
language pairs of English and Japanese. Such manual bilin-
gual dictionaries provide reliable translation knowledge, al-
though their coverage is limited. One disadvantage of man-
ual dictionaries is that conjugation and derivative forms are
generally not provided in such dictionaries. As a simple way
to predict the target word set, we look up source words in a
manual bilingual dictionary.
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4.2. Prediction with Automatically Created Dictionary

Previous studies have proposed methods to automatically
construct bilingual dictionaries. Especially, word alignment
techniques for SMT [16, 5] allow us to construct a dictionary
directly from a parallel corpus. Similar alignment may be
possible using the attention model in NMT, however, relia-
bility is not assured because the attention model is rather soft
as a constraint [17, 18].

The biggest advantage of using word alignment for dic-
tionary construction is that the domain of the dictionary
matches that of translation targets. In addition, conjugations
are available in the dictionary. A disadvantage is that align-
ment errors may decrease the quality of the dictionary.

We apply the GIZA++ toolkit1 that is an implementation
of the IBM alignment models [16] on a parallel corpus to
automatically create a bilingual dictionary. To control the
precision and recall of target word prediction, we introduce
a threshold δ, which is tuned on development data. Target
words with lower translation probability than δ are discarded.

4.3. Exact and Partial Matching with BPE

Conducting translation on sub-words is effective to address
the unknown word problem [19]. We apply BPE [6] to dic-
tionaries for word prediction to make our rewarding model
compatible to BPE-based NMT. For both the dictionary en-
tries and source sentences, we first apply a BPE model
trained on a parallel corpus and then match the entries in dic-
tionaries and source sentences.

We use two types of matching methods between an in-
put sentence and dictionary entries: exact match and par-
tial match. The former is precision-oriented and the latter
is recall-oriented. After applying BPE, a dictionary head-
word (lemma) consists of multiple sub-words; a lemma w
is denoted as w = w1, . . . , wk. Exact match regards w as
matched to a source sentence X if and only if: w1, . . . , wk ∈
X , s.t., for ∀i ∈ {1, . . . , k − 1}, wi = xj ⇔ wi+1 = xj+1.
On the other hand, partial match regards w as matched to
X if wi ∈ X for ∃wi ∈ w. In both matching methods,
translations of w are added to the target word set as predic-
tions. Obviously, target word predictions by partial match
subsumes those by exact match.

5. Experiment Settings
To investigate the effects of our model, we conducted
Japanese-to-English and English-to-Japanese translation ex-
periments on resource-poor and resource-rich domains.

5.1. Translation Tasks

The resource-poor task used the IWSLT 2017 Japanese-
English task from the WIT project [10]. The IWSLT task
provides 223k parallel sentences for training. We used the

1http://code.google.com/p/giza-pp

dev 2010 and test 2010 sets for development and testing, con-
taining 871 and 1, 549 sentences, respectively.

The resource-rich task used the Japanese-English paper
excerpt corpus (ASPEC)2 [11], which is one subtask of the
workshop on Asian translation (WAT)3 [20]. For training,
we used the first 2M parallel sentence pairs among the entire
3M pairs sentences following [21], because the remaining
1M sentences were noisy. The ASPEC task provides 1, 790,
and 1, 812 sentences for development and testing, respec-
tively. We conducted both Japanese-to-English and English-
to-Japanese translation experiments on these two tasks, re-
ferred to as IWSLT-JE, IWSLT-EJ, ASPEC-JE, and ASPEC-
EJ for short, hereafter.

5.2. NMT and Rewarding Model

We used the mlpnlp-nmt system4 that is an LSTM based
encoder-decoder NMT model with attention, which achieved
the best translation performance in human evaluations for
both the ASPEC-JE and ASPEC-EJ tasks at WAT 2017 [20].5

We implemented our rewarding model on top of the mlpnlp-
nmt system (our implementation will be public upon accep-
tance of the paper). We followed the hyper-parameter set-
tings of [21]. The sizes of the source and target side embed-
dings, the LSTM hidden states, the attention hidden states
were all set to 512. We used 2-layer LSTMs for both the en-
coder and decoder with beam size of 5. Stochastic gradient
descent was used as the learning algorithm, with an initial
learning rate of 1.0, gradient clipping of 5.0, and a dropout
rate of 30% for the inter-layer dropout. The mini batch size
was 128. The training epochs for IWSLT-JE, IWSLT-EJ,
ASPEC-JE, and ASPEC-EJ were all set to 20, and we chose
the model with the best development BLEU score among all
the epochs as the baseline systems.6

For the rewarding models, λ in Equation (1) was tuned
on the development sets from 0.1 to 1.0 by 0.1 interval. The
threshold δ that prunes the automatically constructed dictio-
naries in Section 4.2 was tuned on 0, 0.0001, 0.001, 0.01 and
0.1. We selected the best combination among all combina-
tions of δ and λ on the development set for each model.

We investigate the upper-bound performance of our re-
warding model using oracle target word prediction. On this
oracle model, predicted target words are all and only words
in a reference translation, i.e., precision and recall of predic-
tion are both 100%. The best weight of λ was searched from
0.1 increasing the value by 0.1 until we observed a decrease
in BLEU scores.

As preprocessing for the parallel corpora and bilingual
dictionaries, we segmented Japanese sentences/entries us-
ing MeCab,7 and tokenized and truecased the English sen-

2http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
3http://orchid.kuee.kyoto-u.ac.jp/WAT/
4https://github.com/mlpnlp/mlpnlp-nmt/
5Experiments on other NMT models as future work.
6Epoch #11, #20, #13 and #13 for IWSLT-JE, IWSLT-EJ, ASPEC-JE,

and ASPEC-EJ, respectively.
7https://github.com/taku910/mecab
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Figure 2: BLEU scores by the oracle rewarding model when changing the λ on the development set. BLEU scores dramatically
improved on ASPEC task; 9.8 and 11.8 point improvements on ASPEC-JE and EJ, respectively.

tences/entries with the truecase.perl script in Moses8 for
both translation tasks. We further split the words into sub-
words using joint BPE [6] with 32, 000 merge operations.
The vocabulary sizes of the IWSLT-JE task were 21, 534 and
18, 022, respectively. The vocabulary sizes of ASPEC-JE
task were 28, 852 and 22, 340, respectively.

5.3. Bilingual Dictionaries

As the manual dictionary, we used EDR,9 which is the
publicly available English and Japanese bilingual dictio-
nary.10 The numbers of English-to-Japanese and Japanese-
to-English entry pairs are 676k and 1, 052k, respectively. In
EDR, only lemmas are provided and thus inflected forms of
English verbs are unavailable. To address this issue, inflected
forms of the EDR lemmas are extracted from the English
dictionary of XTAG project,11 which is used as the English
morphological analysis dictionary for TreeTagger.12 All the
possible inflected forms are added into our dictionary.

For dictionary look-up, a source sentence is first lemma-
tized and matched with the dictionary. We used MeCab for
Japanese and TreeTagger for English to lemmatize words.

To automatically construct bilingual dictionaries,13 we
used the GIZA++ toolkit on the training corpus in both
English-to-Japanese and Japanese-to-English directions.14

We applied the “grow-diag-final-and” heuristic and obtained
lexical translation probabilities using Moses. We then prune
translation pairs with low probabilities by δ.

8https://github.com/moses-smt/mosesdecoder/blob/master/scripts/recaser/
truecase.perl

9http://www2.nict.go.jp/ipp/EDR/ENG/indexTop.html?
10https://www.nict.go.jp/en/about/
11https://www.cis.upenn.edu/∼xtag/
12http://www.cis.uni-muenchen.de/ schmid/tools/TreeTagger/
13Note that the corpora used for building the dictionaries are the same as

the one used for training each NMT systems. Other resources have not been
used to create automatic dictionaries.

14Note that GIZA++ was applied on the parallel corpora without BPE,
which was only used for look up a source word in a dictionary.

6. Results
We first investigate the effect of λ using the development sets
on both the oracle target word sets and our word prediction
methods. Next, we evaluate the translation quality on the
test sets using the optimized λ. Finally, we conduct detailed
analysis of translation results by our rewarding model.

Throughout the section, the BLEU-4 score was used as
the evaluation metric, which was computed using the multi-
bleu.perl script in Moses on tokenized and truecased English
and word-segmented Japanese sentences, respectively. The
significance tests were performed using the bootstrap resam-
pling [22] at p < 0.01.

6.1. Effects of λ

Figure 2 shows the BLEU scores by the oracle word reward-
ing on the development sets of the IWSLT-JE, IWSLT-EJ,
ASPEC-JE, and ASPEC-EJ tasks. The BLEU scores sig-
nificantly improved according to the λ. The best settings
of λ improves 6.00, 8.25, 9.80, and 11.77 BLEU scores on
the IWSLT-JE, IWSLT-EJ, ASPEC-JE, and ASPEC-EJ tasks
from each baseline system, respectively.

Figure 3 shows the BLEU scores with respect to the λ and
precision/recall of word prediction on our model with word
prediction using manually or automatically created dictionar-
ies. EDR indicates the models predicting target words using
EDR. XTAG indicates the models using EDR extended with
XTAG, which are only for the Japanese-to-English direction.
GIZA indicates the models that predict target words using
automatically constructed dictionary by GIZA++. The suf-
fixes e and p in the legends indicate exact match and partial
match, respectively.

The results show that BLEU scores depend on precision
and recall of target word prediction by different dictionaries.
The weights of λ that achieved the best BLEU scores varied
from 0.1 to 1.0. Notice that these weights are much smaller
than the oracle prediction, which are 0.5, 0.4, 0.4, and 0.5 for
IWSLT-JE, IWSLT-EJ, ASPEC-JE, and ASPEC-EJ on GIZA
partial-match, respectively. This is because predicted words
are less reliable and too much rewarding degrades the trans-
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Figure 3: BLEU scores by our rewarding models with word prediction using bilingual dictionaries when changing the λ on the
development sets. The gentle convex curves of BLEU scores show that the weight of λ is tunable by a simple grid search.

lation quality. The gentle convex curves of BLEU scores also
show that λ is easily tunable using a simple grid search.

6.2. Word Prediction and Translation Results

Table 1 shows the comparison of BLEU scores on the test
sets of the baseline and the rewarding models. We also report
the results that use a merged dictionary. We chose the XTAG
partial and GIZA partial for Japanese-to-English, EDR par-
tial and GIZA partial for English-to-Japanese for merging be-
cause of their individual good performance. We tuned the λ
for merged dictionary using the development set.

We can see that compared to the baselines, most of our
methods significantly improve BLEU scores. Overall, a word
prediction method with high recall shows a larger improve-
ment in BLEU score as consistently shown by comparing ex-
act matching v.s. partial matching, as well as comparing EDR
v.s. XTAG, EDR or XTAG v.s. GIZA, and GIZA v.s. merged
dictionary. However, there is still a gap between rewarding
by our target word prediction and rewarding by oracle pre-
diction. Our GIZA and merged dictionary models achieve a
high recall of about 90% but a very low precision of 0.1%.
Improving the precision for word prediction while keeping a
recall high is our future work.

The baselines on ASPEC-JE and ASPEC-EJ are our re-
production of the state-of-the-art at WAT competition as sin-
gle models, which are reported as achieved 27.62 and 39.71
BLEU scores in the paper. Compared to these scores, our re-
warding model improved 0.67 and 0.36 points, respectively.

6.3. Under and Over Generation

We investigated the rate of under-generation and over-
generation that are the major adequacy problems in NMT
[23] using Translation Edit Rate (TER) [24]. TER aligns a
reference and translation result. We counted the number of
Deletion and Insertion regarding these are caused by under
and over generation, respectively. This is an approximation
to detect under and over generations, but we consider it is
useful as an automatic and handy evaluation metric.

Table 2 shows the average numbers of under and over
generations per sentence. The under-generation decreases
on all the rewarding models in exchange of increasing over-
generation. The rewarding model with oracle target word
prediction reduces under generation about 1.2 word on av-
erage. This result shows that our rewarding model is also
effective for alleviating the under-generation problem. The
over-generation can be reduced by adding global constraint
to the rewarding model, which prohibits rewarding the same
predicted target. This is our future work.

Example translations of the baseline and our rewarding
model (GIZA partial match) are shown in the following. The
phrase of “congenital immunity” and “cancer of” were suc-
cessfully translated by our model.

Source IL - 1 2の癌に対する抵抗性 (先天免疫 )の生
物反応についても考察した

Reference biological response of the resistance (congenital
immunity ) to cancer of IL - 12 was also examined .
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IWSLT ASPEC
JE EJ JE EJ

BLEU (Pre. / Rec.) BLEU (Pre. / Rec.) BLEU (Pre. / Rec.) BLEU (Pre. / Rec.)
Baseline 9.97 (- / -) 10.26 (- / -) 27.21 (- / -) 39.50 (- / -)

EDR exact 9.99 (5.19 / 30.58) 10.75 (3.14 / 46.08) 27.82 (5.57 / 34.10) 39.74 (3.70 / 48.33)
partial 10.06 (0.27 / 79.50) 10.73 (0.33 / 67.09) 27.94 (0.28 / 77.15) 40.05 (0.42 / 67.37)

XTAG exact 9.94 (2.25 / 38.10) - (- / -) 27.73 (2.50 / 41.97) - (- / -)
partial 10.30 (0.20 / 82.88) - (- / -) 28.00 (0.23 / 82.42) - (- / -)

GIZA exact 10.36 (0.27 / 85.98) 10.88 (2.56 / 72.92) 28.29 (0.15 / 91.48) 39.96 (0.46 / 89.73)
partial 10.32 (0.25 / 87.61) 10.83 (0.21 / 87.38) 28.28 (0.13 / 91.80) 40.07 (0.15 / 91.65)

Merged dictionary 10.33 (0.16 / 89.25) 10.81 (0.17 / 88.45) 28.29 (0.14 / 91.77) 40.05 (0.17 / 92.12)
Oracle 17.68 (100 / 100) 20.26 (100 / 100) 37.13 (100 / 100) 52.22 (100 / 100)

Table 1: Comparison of BLEU scores on the test sets (The scores in bold indicate that the results are significantly better than the
baseline at p < 0.01). The best improvement in BLEU score is 1.08 point when using GIZA exact-match in ASPEC-JE.

under-generation over-generation
IWSLT ASPEC IWSLT ASPEC
JE EJ JE EJ JE EJ JE EJ

Baseline 3.58 3.25 3.37 3.36 1.64 2.04 2.27 1.69
EDR e 3.53 2.89 3.07 2.94 1.70 2.40 2.51 2.13
EDR p 3.44 3.13 2.85 2.90 1.69 2.18 2.70 2.09

XTAG e 3.48 - 2.92 - 1.90 - 2.64 -
XTAG p 3.14 - 2.92 - 2.36 - 2.64 -
GIZA e 3.18 2.90 2.75 2.78 2.33 2.58 2.67 2.15
GIZA p 3.20 2.86 2.75 2.78 2.34 2.52 2.66 2.15
Oracle 2.40 2.86 2.71 3.01 4.26 2.80 3.04 3.06

Table 2: Numbers of under/over-generated words per sen-
tence estimated by TER (The scores in bold indicate the best
scores).

Baseline the biological response of the resistance to IL - 12
is also discussed .

Our Model the biological response of the resistance
(congenital immunity ) to the cancer of IL - 12 is also
discussed .

7. Related Work
Our rewarding model can be viewed as a constraint on the de-
coder to output desired target words. There have been studies
that aim to output predetermined words or phrases in neural
language generation. For this purpose, the grid beam search
in NMT is proposed [25] and the SMT lattice is combined
into NMT [26]. In neural conversation generation, Wen et al.
(2015) input a vector representing which information should
be generated to an encoder [27], and a decoder is designed to
explicitly control generation of emotional words [28].

Compared with these previous studies, one benefit of our
rewarding model is that the predicted words are used as soft
constraints on outputs with minimal interaction to the de-
coder. The most relevant study from the methodological
point of view is [14] that also proposes a rewarding model in
a decoder of NMT to improve the translation quality in gen-
eral, such as remaining sequence lengths to output. We focus
on the adequacy problem in NMT and combine word pre-

diction with bilingual dictionaries. Some studies tackle the
adequacy problem in NMT, but they require an independent
SMT system [29, 30] or modification of the decoder [31].
Different from these, ours is simple and a cost-effective so-
lution for the adequacy problem.

The under and over-generation problems have been rec-
ognized not only in NMT, but in other applications that
use the encoder-decoder model for natural language gen-
eration. Different solutions have been proposed. First, a
coverage vector is introduced in NMT [23, 32, 33] that
tracks which source words have been translated by the at-
tention mechanism. A sparse and constrained attention has
been proposed [34], while word prediction, which are also
used to reduce computational cost of softmax function at
the decoder [35, 36], has been proposed to solve the under-
generation problem. The decoder in [37] encourages to out-
put predicted target words by initializing the decoder through
word prediction, and the model in [38] predicts target words
and their expected frequencies to resolve the under and over
generation problems in NMT-based summarization.

8. Conclusion

We proposed a rewarding model with word prediction to
boost the translation probabilities of the predicted target
words that should be in correct translations. Our model
allows incorporating bilingual dictionaries on a BPE-based
NMT system. Extensive evaluation on both resource-poor
and resource-rich domains showed its effectiveness.

As future work, first, we plan to improve the precision
of word prediction preserving the recall at high. Second, we
plan to improve our rewarding model to effectively incor-
porate translation probabilities and extend the model to re-
ward not only words but also phrases. We will also consider
a global constraint by predicting not only target words but
their frequencies, and adjust rewards when a word has been
used in translation. Finally, more experiments on datasets
of various domains and language pairs will be conducted to
investigate the generality of our approach.
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Abstract
Knowledge distillation has recently been successfully ap-
plied to neural machine translation. It allows for building
shrunk networks while the resulting systems retain most of
the quality of the original model. Despite the fact that many
authors report on the benefits of knowledge distillation, few
have discussed the actual reasons why it works, especially
in the context of neural MT. In this paper, we conduct sev-
eral experiments aimed at understanding why and how dis-
tillation impacts accuracy on an English-German translation
task. We show that translation complexity is actually reduced
when building a distilled/synthesised bi-text when compared
to the reference bi-text. We further remove noisy data from
synthesised translations and merge filtered synthesised data
together with original reference, thus achieving additional
gains in terms of accuracy.

1. Introduction
Neural machine translation (NMT) achieves state-of-the-art
results in several translation tasks and for multiple language
pairs [1, 2]. Equivalent to its phrase-based predecessor, neu-
ral networks directly learn from parallel bi-texts, consisting
of large amounts of human created sentences with their cor-
responding translations. Therefore, the quality of an MT en-
gine is heavily dependent on the amount and quality of par-
allel sentences.

Several techniques aimed at boosting the quality [3, 4]
and quantity [5] of training data are successfully applied to
neural MT. Parallel to these techniques, knowledge distilla-
tion [6] has attracted the focus of many researchers given its
simplicity and the quality of the results. However, despite
the fact that a growing number of private entities have begun
to include distillation into their NMT systems [7, 8, 9] and
that knowledge distillation has demonstrated its performance
for multiple tasks [10, 11, 12], none of them give a detailed
analysis of the reasons why it works.

In most cases, the availability of parallel corpora is a pre-
requisite to build Neural MT systems. The process of com-
piling parallel bi-texts is usually composed of several steps:
crawling, filtering, cleaning, etc. As a result, parallel corpora
usually contain parallel sentences that are often not as par-
allel as one might assume. And even for parallel sentences
that truly convey the same meaning, in some cases transla-
tions follow a more or less word-for-word pattern (more lit-

eral translations). While in many other cases, translations
show greater latitude of expression (more flexible transla-
tions) with higher degrees of variability, which humans often
judge as good. However, machine translations are usually
“closer” in terms of syntactic structure and present lower lev-
els of variability when considering word choice. It is rather
an intuitive idea that feeding more “literal” translations to
a neural MT network should facilitate the training process
compared to training with less literal translations (original
bi-text).

In this paper, we report on the results of experiments
where we automatically distill a human translation bi-text
which is then used to train neural translation engines. Thus,
aiming at boosting the learning ability of neural translation
models. We show that the resulting models perform even
better than a neural translation engine trained on the original
reference dataset.

Our contribution is as follows:

- We analyse the reason why and how distillation works
for neural machine translation.

- We analyse in detail the difference between original
reference translations and synthesised translations.

- We further filter out noise from synthetic data and mea-
sure the impact on using both synthetic and reference
translations.

The remainder of this paper is structured as follows. Sec-
tion 2 briefly surveys previous work. Section 3 outlines our
neural MT engine and details the distillation approach pre-
sented in this paper. Sections 4, 5 and 6 report training con-
figurations and experimental results with detailed analysis.
Section 7 draws conclusions and outlines future work.

2. Related Work
Sequential knowledge distillation for neural machine trans-
lation was first detailed by [6]. The authors trained a smaller
student network to perform better by learning from a larger
teacher network allowing more compact neural MT models
to be built. [7] followed this idea and proposed a similar
language simplification method based on distillation. They
reported improvements on English to German and English to
French translations. [8] further demonstrated distillation ex-
periments from both an ensemble teacher model and a single
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model. After that, they improved training efficiency and per-
formance by removing noisy sentences from the training cor-
pus. As a comparison, we performed detailed experiments
and analysed the reasons why and how distillation works for
neural machine translation.

Other than neural MT, [10] and [11] show that distillation
also works well when transferring knowledge from a network
ensemble or from a large highly regularised model into a
smaller, distilled network for image classification and speech
recognition. [12] applied distillation based on a search based
structured prediction on dependency parsing and machine
translation. These works demonstrate that knowledge dis-
tillation is adapted to many different tasks. In this work, we
focus on the influence of knowledge distillation to neural ma-
chine translation and suggest directions for further improve-
ments.

3. Neural Machine Translation
We train two types of NMT systems in this work, an RNN-
based model and a Transformer-based model. The RNN
model follows the architecture presented in [13]. It is im-
plemented as an encoder-decoder network with multiple lay-
ers of an RNN with Long Short-Term Memory hidden units
[14]. The Transformer model follows the work in [15]. It
encodes the representation of sentences in a way a self at-
tention only and is reported as the current state-of-the-art in
many machine translation tasks [1, 9].

For the RNN model, the encoder is a bidirectional neural
network that reads an input sequence s = (s1, ..., sJ) and
calculates a forward sequence of hidden states (

−→
h1, ...,

−→
hJ),

and a backward sequence (
←−
h1, ...,

←−
hJ). The decoder is an

RNN that predicts a target sequence t = (t1, ..., tI), being
J and I respectively the source and target sentence lengths.
Each word ti is predicted based on a recurrent hidden state
hi, the previously predicted word ti−1, and a context vec-
tor ci. We employ the attentional architecture from [16] and
use the implementation of OpenNMT1. Additional details are
given in [17].

Unlike the RNN model, the Transformer model directly
models the representations of each sentence with a self-
attention mechanism. Hence, it reduces the number of op-
erations related between tokens in different positions, espe-
cially for distant positions, in input and output sequence. The
Transformer model stacks a so-called multi-head self atten-
tion layer and a position-wise, fully connected layer for non-
linear conversions on both the encoder and decoder side. On
the decoder side, it uses masked self-attention to prevent po-
sitions to attend to unseen positions.

The notion of time step is encoded automatically in the
sequence in the RNN model. Whereas the Transformer
model uses positional embedding to record the position infor-
mation of each word in the sequence. In addition, the Trans-
former model is easy to be parallelized for the MLE training

1https://github.com/OpenNMT/OpenNMT

process across multiple GPUs. This allows the benefit of ac-
celerating the training speed compared with the RNN model.
In this work, we use the implementation of OpenNMT-tf 2 to
train our Transformer based systems.

3.1. Knowledge Distillation

Knowledge distillation is a method to train different deep
neural networks on the same data. Information learned from
a large teacher model with the original reference data can be
learned quite well with a smaller student model with the syn-
thesised data [10]. Thus, a compact smaller model is gener-
ated and used to replace the larger model, especially in some
resource limited devices.

For machine translation, we follow the approach de-
scribed by [6]. The machine translation model is trained
to minimise the Kullback-Leibler divergence, either between
the model distribution and ground-truth distribution LNLL,
or between the model distribution and synthesised data dis-
tribution LKD, which is from the teacher system, or an inter-
polation of both:

L = (1− α) · LNLL + α · LKD

In [6], three distillation methods are proposed by tun-
ing the weight (α) in sequence-level loss. We simplify this
process and perform experiments with α = 1 in this work.
First, we train a teacher system with the original source/target
data. Second, we train another student system with the
source/synthesised target data. The synthesised target lan-
guage data is generated by running beam search (with beam
size 5) over the training set with the teacher system (forward
translation),

The objective during the training of the student system
is the same as the teacher system. The only difference is
the student system’s objective is not to maximise log likeli-
hood toward the ground-truth reference, but toward a gener-
alised “soft” target, which is from the teacher system. From
this point of view, the student system is directed by how the
teacher system acts. Hence, in general a stronger teacher sys-
tem is preferred. E.g. an ensemble teacher system is used in
[8].

4. Experimental Conditions
4.1. Data

Experiments are performed using a preprocessed and to-
kenised version of WMT English-German translations3. The
training set contains 4.5M sentence pairs. We use news-
test2013 as validation set and both newstest2014 and new-
stest2015 as test sets. We applied joint byte-pair encoding
(BPE) [18] with 32K merge operations. The actual training
vocabulary size is of 34K tokens after BPE tokenization. We

2https://github.com/OpenNMT/OpenNMT-tf
3The corpus is already tokenised and can be downloaded from https:

//nlp.stanford.edu/projects/nmt
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tfm
Large N=6, d=512, dff=4096, h=8
Middle N=6, d=512, dff=2048, h=8
Small N=4, d=256, dff=2048, h=8

rnn
Large Bi-LSTM, 4x1024, emb=512
Middle Bi-LSTM, 2x1024, emb=512
Small Bi-LSTM, 2x512, emb=512

Table 1: Configurations of the networks used in this paper. In
the remainder of this paper we use respectively tfm.L, tfm.M, tfm.S,
rnn.L, rnn.M and rnn.S to represent systems trained with different
configurations.

limit sentence length to 100 in both source and target sides
(excluding 0.31% of the training corpus). After decoding, we
remove BPE joiners and evaluate the tokenised output with
multi-bleu.perl [19].

4.2. Network Configuration

In this paper, we employs several neural MT models based
on the Transformer [15] and RNN [13] models. Three dif-
ferent systems are used for each architecture, which differ in
network size. Details of the system configurations are given
in Table 1.

For RNN based systems, we use stochastic gradient de-
scent, a mini-batch size of 64 in segments with dropout prob-
ability set to 0.3. We train our models during 18 epochs and
evaluate the performance of the last epoch. Initial learning
rate is set to 1.0 and we start decaying after epoch 10 by a
fixed decay rate of 0.7. In decoding, we use a beam size of
5.

In the case of Transformer systems, we use Lazy Adam
optimiser, which starts the learning rate at 1.0. We train
the systems with a batch size of 8, 192 in tokens and save
checkpoints in every 5, 000 steps. We terminate training af-
ter 400K iterations and average the last 8 checkpoints to get
the final evaluation.

5. Analysis of Synthetic Translations
Aiming for a better understanding of the translated lan-
guages, we first conduct an elementary human analysis of the
German hypotheses (synthesised translations) produced by
the best performing network. We observe that in many cases,
automatic translations produced by our neural MT systems
consist of paraphrases of the reference translations. While
both, reference and automatic translations, preserve the same
meaning and are grammatically correct, automatic transla-
tions are closer in terms of syntactic structure to the source
sentences than reference translations, which seams a key fac-
tor to train machine translation systems.

Examples in Table 2 illustrate this fact. In the first ex-
ample, the English and German synthetic sentences follow a
very similar structure. While in the German reference trans-
lation, the sentence: you are sure to find the nightclub you
like is expressed by clubbers (Disco-Gänger) are guaranteed

Figure 1: Histogram indicating the percentage (%) of source
words aligned to n (x-axis) distinct target words in the train-
ing set.

to get their money (common garantiert auf ihre Kosten). In
the second example, we can see a very similar situation. The
verb verwendet is shifted to the end of the sentence when
comparing the structure of the English and the German syn-
thetic sentences. In contrast, the reference German transla-
tion employs a greater latitude of expression.

Next, we conduct several experiments in order to con-
firm the hypothesis that automatic translations are closer to
the input sentence than reference translations. We compare
reference German translations (ref ) to automatic translations
(syn) produced by our neural MT network over the entire
training set. In our experiments, we employ word alignments
computed using fast align4.

5.1. Translation Fertility

First, we measure translation fertility. We identify the num-
ber of different target words aligned to each source word in
the training corpus. We regard this number as the “fertility”
between parallel sentences. Figure 1 shows a histogram in-
dicating the percentage of source words aligned to n distinct
target words.

As it can be seen, English words are in average related
to less German words in the case of the automatic transla-
tions (syn) than for reference translations (ref ). 70.1% of
English tokens are aligned to a single German token in the
case of automatic translations while this number is reduced to
48.6% in the case of reference translations. As expected, the
opposite situation is also observed when considering target
words aligned to multiple source words. In this case, refer-
ence translations show always a higher percentage of tokens.

5.2. Translation Distortion

In addition, we compare the translation distortion in order to
validate the closeness (similarity) of syntactic structures. The
translation distortion is calculated by the number of crossed
alignments on automatic (syn) and reference (ref) transla-
tions. Given a sentence pair with its set of alignments, we

4https://github.com/clab/fast_align
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Src: [In Cala Ratjada]1 [you are sure to find]2 [a nightclub]3 [you like]4.
Ref: Disco-Gänger kommen [in Cala Ratjada]1 garantiert auf ihre Kosten.
Syn: [In Cala Ratjada]1 [finden Sie sicher]2 [einen Nachtclub]3, [den Sie mögen]4.
Src: [Your personal information]1 [will only be]2 [used]3 [to process your booking]4.
Ref: Sie [werden nur]2 in dem Umfang weitergegeben , wie es [für eine Buchung]4 notwendig ist.
Syn: [Ihre persönlichen Daten]1 [werden nur zur]2 [Bearbeitung Ihrer Buchung]4 [verwendet]3.

Table 2: Examples of English-to-German translation. Subscripts in these examples indicate the alignment between multi-words
expressions.

Figure 2: Difference in number of crossed alignments (in
percentage (%)) between reference and synthesised transla-
tions. 0 means no crossed alignment, i.e. monotonic, be-
tween source and target sentences.

compute for each source word si the number of alignment
crossings between the given source word and the rest of the
source words. We consider that two alignments (i, j) and
(i′, j′) are crossed if (i−i′)∗(j−j′) < 0. Figure 2 illustrates
the difference in number of crossed alignments between ref-
erence and synthetic translations.

As it can be seen, automatic (syn) translations show a
higher number of words with no crossed alignments (49.2%)
than reference (ref ) translations (39.8%). In contrast, when
considering larger numbers of crossings, the reference data
set shows higher ratios than the automatic data set. This
shows the synthesised target is much “closer” to the source
in grammatical order compared with original reference.

Note that automatic translations carry important levels of
noise (translation errors) that cannot be neglected from the
view of a human. However, since it’s the generalised out-
put from the teacher system, it is indeed compatible to the
machines. The next section evaluates the suitability of auto-
matic translations as a training set for our neural MT systems
compared to reference translations.

6. Results
6.1. Basic systems

We first summarise translation accuracy results (BLEU
scores) of our 6 basic systems learned over the reference
training set. As shown in Table 3, systems implementing the

Config newstest2014 newstest2015
tfm.L* 27.87 30.04
tfm.M* 27.59 29.73
tfm.S 24.60 27.58
rnn.L 24.11 26.62
rnn.M 24.11 26.74
rnn.S 22.94 25.85

Table 3: BLEU scores on systems trained over the original
dataset. Systems with * are candidates for teacher systems.

Transformer architecture outperform RNN networks. The
best score is achieved by tfm.L, which is 27.87 for new-
stest2014 and 30.04 for newstest2015. The smallest trans-
former network (tfm.S) clearly outperforms the largest RNN
network (rnn.L) in about 0.5 BLEU points for newstest2014.
We choose the best two systems tfm.L and tfm.M as the can-
didates for teacher systems.

According to BLEU scores, similar performance is ob-
tained by large and middle size versions of the Transformer
and RNN models. However, the smallest systems show a
clear drop in performance for both architectures. We argue
that, when the network is big enough, the performance relies
more on the amount of training data. That is, if the training
data is fixed, there is a proper size of the neural network to
learn the information embedded inside this training data. An
even larger network could achieve a better performance, but
not significantly.

6.2. Comparison between different teachers

For the distillation based method, the teacher system is im-
portant because its output will be used as the student’s train-
ing reference. As shown in [8], a student system trained
with an ensemble teacher usually performs better than that
trained with a single teacher system. In our experiments, we
train student systems based on a single teacher system. Ta-
ble 3 shows that system tfm.L achieves similar accuracy com-
pared with system tfm.M with original dataset. This means
that there is no major difference between tfm.L and tfm.M,
and these two systems can both be used as teacher systems.
Therefore, in this section, we compare the performance be-
tween student systems trained on different teachers. We show
that a strong teacher will lead to better students. Results are
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Student
System

Teacher
System

newstest
2014

newstest
2015

tfm.S
tfm.L 26.07 28.96
tfm.M 25.33 27.79

rnn.S
tfm.L 24.84 27.99
tfm.M 24.22 27.10

Table 4: Results of comparison between different teacher
systems.

shown in Table 4.
Both student systems outperform basic systems trained

with original data (in Table 3). For newstest2014, systems
trained with original reference data achieve 24.60 for model
tfm.S and 22.94 for model rnn.S. When systems are trained
with synthesised data from teacher system tfm.L, the perfor-
mance improves to 26.07 (+1.47) and 24.84 (+1.90) respec-
tively. This proves the distillation method works for neural
machine translation.

We also notice that the difference between the two
teacher systems tfm.L and tfm.M trained with original data
is 0.28 for newstest2014. However, the difference between
same student model trained with these two teachers increases
to 0.74 for tfm.S and 0.62 for rnn.S. We argue that this is
because of noisy data present in the synthesised target side.
We found from the training synthesised data that some tar-
get sentences are exactly the same regardless of the source
sentences. We further checked the original reference target
sentence and confirmed that it is because the original bi-text
is not parallel (noise in the original training data). During
the training of the teacher system, neural models tend to nor-
malise all these “bad” instances into a uniformed one by min-
imising the log likelihood. However, during the training of
the student system, such noise is amplified and leads to the
larger gap between the different systems. We therefore anal-
yse in detail the influence of noise in the next section.

6.3. Influence of synthesised data noise

Based on Table 4, we can conclude that a stronger teacher
is usually beneficial to train student systems. Similarly,
we compared two similar student systems rnn.M and rnn.S
based on teacher tfm.L. We found rnn.M can achieve 26.22 in
BLEU score in newstest2014, which is +1.38 BLEU points
higher than rnn.S. We therefore choose tfm.L as our teacher
system and tfm.S and rnn.M as our default student systems in
the following experiments. In this section, we train tfm.S and
rnn.M with a different proportion of the synthesised data to
see the influence of data noise for student systems.

As we showed in section 5, the synthesised data is the
translation of the whole training set by a teacher model.
Sequences in these generated hypotheses contain noise as
they are from machine translated results. Noise includes un-
grammatical sentences, wrong words selection, word order-
ing problems, etc. Also there are inconsistent target sen-

synthesised
data

newstest
2014

newstest
2015

tfm.S
100% 26.07 28.96
95% 26.24 29.42
90% 26.20 29.21

rnn.M
100% 26.22 28.87
95% 26.11 28.92
90% 25.98 28.80

Table 5: Impact on different amounts of synthesised data for
student systems by removing noisy data from the output of
the teacher system tfm.L.

tences with the source in semantic and under/over transla-
tion5 problems in the synthesised data. We regard all these
problems as noise because they are not correct translations.

We use an embedding based method proposed by [20] to
calculate the similarity between source and target sentences.
In [20], a sentence embedding was first built based on word
similarity, relying on a neural architecture, which is able to
identify several types of cross-lingual divergences. The re-
sulting embeddings are then used to measure semantic equiv-
alence between sentences6. In our case, the target sentences
are synthesised data from a teacher system. We filter out sen-
tence pairs which are not similar based on the similarity score
and train the student system with the remaining data. Table 5
shows the results from distilled tfm.S and rnn.M systems.

We compare two different student systems, Transformer
based tfm.S and RNN based rnn.M. For rnn.M system, we
can not see any gains by removing different proportions of
noisy data. While for tfm.S system, when we remove 5%
noisy data, we found an increase from 26.07 to 26.24 (+0.17)
in BLEU score for newstest2014, which is also the best per-
formance we have achieved until now.

We argue that the Transformer based system is more sen-
sitive to the noisy data compared with the RNN based sys-
tem. When a little amount noisy data (e.g. 5%) is removed,
the performance improves because the remaining 95% is
enough to train a good system. Along with the further re-
duction to 90%, both the Transformer based model and the
RNN based model starts to decrease because there are fewer
instances used for training. This also shows that the size of
training data is another crucial factor to the final accuracy.

Another interesting phenomenon is that the differences
between student systems with different architecture are not
so big compared with systems trained with an original ref-
erence. In this experiment, rnn.M performs well compared
with tfm.S given synthesised training data, while it is not the
case for them to be trained with original data. We speculate
that this is because the diversity in distilled bi-text is much

5During translating, under translation is when the words/phrases in
the source sentence are missing (not translated) in the target side. Over
translation is when there are duplicated translations for the same source
words/phrases present on the target side.

6https://github.com/jmcrego/similarity
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merged data
(hyp+ref)

newstest
2014

newstest
2015

tfm.S

95%+5% 26.27 29.09
90%+10% 26.20 29.11
80%+20% 25.76 28.88
50%+50% 25.58 28.54

rnn.M

95%+5% 25.94 28.83
90%+10% 25.52 28.76
80%+20% 25.66 28.44
50%+50% 25.04 27.60

Table 6: Results of merged corpus with synthesised data and
original data. 95%+5% means the training data is composed
of 95% data from the synthesised target translations (hypoth-
esis) according to the similarity and additional 5% data from
original target data (reference).

less than in the original reference. Systems with different ar-
chitecture show different sensitivity of data diversity. That
is also to say, the distilled bi-text is consistent and compact,
which is much suitable for training machine translation sys-
tems.

6.4. Replacing noisy data with the original reference

Previous experiments show that systems trained with synthe-
sised data usually perform better than systems trained with
original reference data. At the same time, when we remove
some noisy data from the synthesised training set, there is
further improvement for the student system. In this section,
we test experiments with merged synthesised data and the
original reference as the training corpora to see which part is
more crucial for the final performance.

First, we use a similarity score between source and tar-
get sentences calculated beforehand to rank the synthesised
data. We select top X% “similar” data and for the remaining
(1 − X%) data, we replace the target side with the original
references to merge into a new data set. Table 6 shows the
evaluation results on two student systems tfm.S and rnn.M.

Results show that synthesised data greatly contribute to
the final accuracy. Along with the increase of data from the
synthesised target side, the performance increases as well for
both tfm.S and rnn.M. However, when comparing with sys-
tems trained with 100% synthesised data or systems trained
with 95% synthesised data, the performance is different be-
tween the Transformer and RNN based models.

For tfm.S, when training with merged 95% data, the sys-
tem reaches its highest performance in newstest2014. As for
rnn.M, on the contrary, the performance starts to drop a lit-
tle. It is even worse than training with the filtered 95% syn-
thesised data. We argue this inconsistency stems from the
architecture differences. The performance of the RNN based
model is difficult to be improved. However, the Transformer-
based model, due to its sensitivity to data diversity, can per-
form quite well as long as the training data is well controlled.

2X data
(hyp+ref)

newstest
2014

newstest
2015

tfm.S 100%+100% 25.95 28.74
rnn.M 100%+100% 25.78 28.85

Table 7: Results of the concatenated synthesised data and
original reference. Twice the training cost is needed as the
corpus is doubled.

6.5. Doubled training data

Lastly, we combine the synthesised data with the original ref-
erence. This will double the training data size and lead to
twice the training cost. However, based on the results shown
in Table 7, we found that even though the data size was dou-
bled, we could not achieve further improvement.

We analyse that this is because the synthesised data is
generated from the teacher system. All the information em-
bedded in the synthesised data is already in the original data.
In other words, adding such synthesised data is somewhat
equivalent to adding the same original data. It is similar to
training the system with the same data but with a 2X data
size. Furthermore, considering noise existed in the synthe-
sised data, systems trained with this 2X data is even worse
than the original doubled data.

7. Conclusions
We have presented distillation experiments for neural ma-
chine translation. Results indicate the suitability of using
synthetic translations to train neural MT systems. Higher
accuracy results are obtained by the systems when trained
using synthetic data. We show data noise present in both the
original translation references and synthesised translations is
a key factor that influence the final performance.

Meanwhile, the Transformer-based and RNN-based sys-
tems perform differently given different amounts of syn-
thesised and/or merged data. We further prove that much
“closer” translations contribute the most to the system’s ac-
curacy and that is also the reason why distillation works for
neural machine translation.

In conclusion, we summarise that for neural machine
translation:

- Having a stronger teacher system usually helps the stu-
dent systems.

- Removing noise from the synthesised data of teacher
systems also helps.

- Replacing noisy data with the original reference data
can get further improvements.

A clear drawback of distillation-based methods is the ef-
ficiency of the training process. Student systems must be
trained after the teacher system. In addition, we must also
consider the cost of translating the entire training set. As

28

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018



such, one solution is to integrate this procedure during the
training process. Since data noise is one of the key factors
during training, we believe that identifying noisy instances
during training may alleviate the time problem. We leave
that for future work.

8. Acknowledgements
We would like to thank all the anonymous reviewers for their
insightful comments.

9. References
[1] P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention

with relative position representations,” CoRR, vol.
abs/1803.02155, 2018. [Online]. Available: http:
//arxiv.org/abs/1803.02155

[2] O. Bojar, Y. Graham, A. Kamran, and M. Stanojević,
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Abstract
In this paper, we empirically investigate applying word-level
weights to adapt neural machine translation to e-commerce
domains, where small e-commerce datasets and large out-
of-domain datasets are available. In order to mine in-
domain like words in the out-of-domain datasets, we com-
pute word weights by using a domain-specific and a non-
domain-specific language model followed by smoothing and
binary quantization. The baseline model is trained on mixed
in-domain and out-of-domain datasets. Experimental re-
sults on En → Zh e-commerce domain translation show that
compared to continuing training without word weights, it
improves MT quality by up to 3.11% BLEU absolute and
1.59% TER. We have also trained models using fine-tuning
on the in-domain data. Pre-training a model with word
weights improves fine-tuning up to 1.24% BLEU absolute
and 1.64% TER, respectively.

1. Introduction
Domain adaptation (DA) techniques in machine translation
(MT) have been widely studied. For statistical machine
translation (SMT), several DA methods have been proposed
to overcome the lack of domain-specific data. For exam-
ple, self-training [1, 2] uses a MT system trained on general
corpus to translate in-domain monolingual data as additional
training sentences. Topic-based DA [3, 4] employs topic-
based translation models to adapt for different scenarios.
Data selection approaches [5, 6, 7, 8] first score the out-of-
domain data using language model trained on both domain-
specific and non-domain-specific monolingual corpora, then
rank and select the out-of-domain data that are similar to
in-domain data. Instance weighting methods [9, 10] score
each sentence/domain using statistical rules, then train the
MT models by giving sentence/domain-level scores.

Neural machine translation (NMT) has become state-of-
the-art in recent years [11, 12, 13, 14, 15]. There are sev-
eral research works on NMT domain adaptation. For exam-
ple, back-translation methods [16] use a NMT model trained
on the reverse direction to translate domain-specific mono-
lingual data as additional training sentences. Fast DA ap-
proaches [13, 17] train a base model using mixed in-domain
and out-of-domain datasets, then fine-tuning on in-domain
datasets. Mixed fine-tuning [18] combines fine-tuning and
multi-domain NMT. Similar to instance weighting in SMT,

sentence/domain weighting methods [19, 20] can also be
used for NMT domain adaptation based on different objec-
tives. DA with meta information [21] is proposed to train
topic-aware models using domain-specific tags for the de-
coder. Chunk weighting method [22] describes a way of se-
lecting and integrating positive partial feedback from model-
generated sentences into NMT training.

In this paper, we propose word-level weighting for NMT
domain adaptation. We compute the word weights in out-of-
domain datasets based on the logarithm difference of prob-
ability according to a domain-specific language model and
non-domain-specific language model followed by smoothing
and binary quantization. This gives the in-domain words in
out-of-domain sentences higher weights and biases the NMT
model to generate more in-domain-like words. Thus, the
work presented in this paper can be viewed as a general-
ization of instance weighting. To remove noise in the word
weights, we study the effectiveness of using smoothing meth-
ods. Specifically, a weighted moving average filter is pro-
posed to apply smoothing to the computed word scores with
its nearby words.

Experiments on En → Zh e-commerce domain trans-
lations tasks show that: 1) Domain adapted model with
smoothed word weights gains significant improvement over
non-smoothed weights; 2) Continuing training the model
with computed word weights improves translation results
significantly compared to continuing training without word
weights; and 3) Compared to directly fine-tuning on in-
domain datasets, fine-tuning after pre-training with word
weights results in translation performance improvement on
the in-domain e-commerce test set.

The rest of the paper is structured as follows. The ap-
proach and model we use is described in Section 2, where we
first recap the NMT objective and then present the details of
the proposed word-level weighting approach. Experimental
results and discussions are presented in Section 3 and Section
4, followed by conclusions and outlook in Section 5.

2. Approach

We present word weighting objective on NMT before dis-
cussing how to generate the weights.
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2.1. Objective

In this work we use attention-based neural machine trans-
lation model [11, 12, 14] for experiments. Given a parallel
bilingual dataset D, the NMT model is trained to maximize
the conditional likelihood L of a target sequence yT1 : y1 , . . .
, yT given a source sequence xN

1 : x1 , . . . , xN :

L =
∑

(xN
1 ,yT

1 )∈D

T∑

t=1

log p(yt|yt−1
1 , xN

1 ) (1)

Training objective (1) can be simply modified to word-
level loss Lw with word weights wt:

Lw =
∑

(xN
1 ,yT

1 ,wT
1 )∈D

T∑

t=1

wt log p(yt|yt−1
1 , xN

1 ) (2)

The word weights wt for a target sequence yT1 can be 0
or 1. We set wt = 1 for all in-domain sentences. For out-
of-domain sentences, wt = 1 means the word in the out-of-
domain sentence is related to in-domain datasets (selected),
wt = 0 means it is not.

Our training objective (2) can be seen as a generalization
of the original training objective (1) and instance weighting
methods [19, 20]. The original loss (1) sets wt = 1 for ev-
ery word in all sentences. The instance-level loss can be ex-
pressed as giving a target sentence, wt = w ∀t, where w
is the weight for the sentence or the domain. Our training
objective is similar to [22], however, instead of generating
chunk-based user feedback for model predictions, we com-
pute the word weights using language models trained on real
target data.

2.2. Approaches to the objective

To compute discriminative word weights, we first follow the
data selection methods in SMT [5]. To state this formally,
let I be the domain-specific corpus, O be the non-domain-
specific corpus, and yt be the word in out-of-domain sen-
tences at target position t. We denote by PI(yt|yt−1

t−n) the
per-word probability conditioned on previous n − 1 words,
according to a language model trained on I . Similarly, we
denote by PO(yt|yt−1

t−n) the per-word probability conditioned
on previous n − 1 words according to a language model
trained on O. We can estimate PI(yt|yt−1

t−n) and PO(yt|yt−1
t−n)

by training language models on I and O, separately. There-
fore, the word scores st can be computed in the log domain:

st = logPI(yt|yt−1
t−n)− logPO(yt|yt−1

t−n) (3)

Since the value of st is strongly correlated with the neigh-
borhood words, it is worth investigating smoothing of the
word scores before binary thresholding to remove the noise.
Hence, a weighted moving average kernel:

ŝt =

⌊L
2 ⌋∑

k=⌊−L
2 ⌋

ckst+k (4)

is then applied to smooth word score st at each target
position t. Here L is the kernel size and ck are values of the
kernel for k ∈ [−L

2 , L
2 ]. In our experiments, we heuristically

set the values of the kernel based on mean average with ck =

c = 1
L or gaussian distribution with ck = 1√

2πσ
e

−k2

2σ2 , where
we set σ to be the global variance of the word scores.

The special case of sentence-level weights can be ex-
pressed as ŝt = ŝ ∀t, where ŝ is the averaged smoothed word
scores for the target sentence yT1 . In this case, the training ob-
jective (2) becomes equivalent to sentence weighting method
from [20] with appropriately modified scoring function.

After smoothing the word scores, we finally binarize the
smoothed word scores based on a threshold T :

wt =

{
1, if ŝt ≥ T

0, otherwise
(5)

In our experiments we set the threshold T = 0.5 and only
keep the words above the threshold. This means we select a
word if wt = 1 and do not select it if wt = 0. Considering
word weights wt are gathered in a binary form during contin-
uing training, the selected words would be good candidates
that we want to extract from out-of-domain corpus O. In fact,
word weights wt are precomputed offline and used during the
training. It can be set to any real value, depending on the way
of thresholding.

2.3. Chunk-based weighting

Considering that the selected words in a target sentence
might still be noisy and we select single random words,
we alternatively experimented with selecting only the part
(chunk) in the target sentence that has the longest consec-
utive weights (LCW) with wt = 1. For each target sen-
tence, we pick only one chunk and set all other weights to
zero. See Figure 1 for an example. Then, because the sur-
rounding context is also selected, the chunk is less likely to
be noise. If there are multiple such chunks with the same
length in the sentence, we simply randomly sample one of
them. We found that the chunk-based approach in practice
performs slightly better than word-level weighting.

3. Experiments
In this section, we conduct a series of experiments to study
how well NMT performs when word-level weights are given
for out-of-domain training data. We also study the effective-
ness of the smoothing methods.

3.1. Datasets and data processing

We report the results on our in-house English-to-Chinese e-
commerce item descriptions dataset. Item descriptions are
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provided by private sellers and like any user-generated con-
tent, may contain ungrammatical sentences, spelling errors,
and other type of noise. We first segmented the Chinese sen-
tences with Stanford Chinese word segmentation tool [23]
and tokenized English sentences with the scripts provided
in Moses [24]. On both languages, we use subword units
based on byte-pair encoding (BPE) [25] with 42,000 sub-
word symbols learned separately for each language. For
En-Zh we have 0.53M in-domain e-commerce sentence pairs
and 5.15M sampled out-of-domain sentence pairs (UN, sub-
titles, TAUS data collections, etc.) that have significant n-
gram overlap with the item description data. We validate our
models on an in-house development set consisting of 3173
item descriptions, and evaluate on an in-house test set of
739 item descriptions using case-insensitive character-level
BLEU [26] and TER [27] with in-house tools. For devel-
opment and test sets, a single reference translation is used.
Statistics of the data sets are reported in Table 1.

To compute our word weights we train a domain-specific
4-gram language model and a non-domain specific 4-gram
language model using KenLM [28]. For the domain-specific
language model, we collected domain-specific monolingual
data from an e-commerce website, resulting in the number
of 15M sentences. For the non-domain-specific language
model, we use sampled LDC Chinese Gigaword (LDC Cat-
alog No.: LDC2003T09) with 36M sentences. It should be
noted that we train our language models on the word-level.
In order to score a BPE-level corpus with such a language
model, we score its words and copy this score for each of the
subword units. After the word scores are computed, we then
smooth them via a guassian distributed kernel with window
size L = 5. We choose window size L = 5 considering that
the language model is trained based on sequences of four
words. We observed similar results with different window
sizes, which is discussed in Section 4. Finally, we binarize
the smoothed word scores into binary word weights by set-
ting the threshold T = 0.5. The computed word weights are
applied to the target side of out-of-domain sentences during
the phase of continuing training. In order to get better trans-
lation results, we first trained the baseline model with mixed
in-domain and out-of-domain data according to training ob-
jective 1, where no weights are used. We start our experi-
ments by continuing training from this baseline model.

We implemented our NMT model using Tensorflow [29]
library. The encoder is a bidirectional LSTM with size of 512
and the decoder is a LSTM with 2 layers of same size. All the
weight parameters are initialized uniformly in [−0.1, 0.1].
We set dropout on RNN inputs with dropping probability 0.2.
We train the networks with batch size 120 using SGD with
initial learning rate 1.0 and gradually decaying to 0.1 after
the initial 2 epochs.

3.2. Results

Statistics of the out-of-domain sentences/tokens selection af-
ter applying different types of weights are summarized in Ta-

ble 2. Before the selection, the number of out-of-domain
sentences is 5.15M and the number of tokens is 93.4M.
When sentence-level weights are used, the sentences with
wt = 0 are ignored, resulting in the number of remain-
ing sentences/tokens around 2.63M and 26.3M, respectively.
When word-level weights are used, there are 1, 279, 927 sen-
tences where all word weights in the sentences are equal to
zero. After removing these sentences, around 3.87M sen-
tences are preserved and the number of selected tokens with
word weights wt=1 is around 36.6M. Given computed word
weights, we alternatively choose only the chunk with the
longest consecutive weights (LCW) where wt = 1, resulting
in chunk-level weights with the selected number of tokens
further reduced to 25.8M.

We train a baseline NMT model on mixed in-domain and
out-of-domain data with objective defined as Eq. 1 for 6
epochs. The data is mixed completely (mixed 0.53M in-
domain e-commerce and 5.15M sampled out-of-domain sen-
tence pairs) while training the baseline model. The baseline
model initialized by a mix of in-domain/out-of-domain data
can be regarded as a kind of ”warm start”. We have also
tried training a baseline with out-of-domain data only and
observed slightly worse result after fine-tuning on in-domain
data (0.5 BLEU). Hence, we use the baseline model trained
on a mix of in-domain/out-of-domain data in the following
experiments. Given the baseline model, we then directly fine-
tune on in-domain data for another 10 epochs or first con-
tinue training on the mixed data with sentence/chunk/word
weights for 3 epochs and then fine-tune on in-domain data
for 10 epochs. The model is saved after each epoch. We take
the model which gives the best result on our development set
for evaluation. Note that we always set word weights wt = 1
for our in-domain dataset.

In Table 3, we show the effect of different types of
weights on translation performance. First, the baseline
trained on mixed in-domain and out-of-domain datasets gives
24.37% BLEU and 61.66% TER, respectively. Directly fine-
tuning on in-domain dataset already improves the model due
to the bias of the model towards in-domain data.

Continuing training on mixed datasets with previous ob-
jective defined in Eq. 1 shows insignificant changes in terms
of BLEU and TER. However, introducing sentence-level
weights improves the model from 24.37% to 25.79% BLEU
and 61.66% to 60.82% TER, respectively. Compared to con-
tinuing training without weights, sentence-level weights are
generated as described in Section 2.2, where wt ∀t are set to
the same sentence weight w ∈ {0, 1} . We set the threshold
equal to 0.5 and keep the sentences with weights above the
threshold. The result from sentence-level feedback suggests
that mining good out-of-domain sentences which are sim-
ilar to in-domain datasets and dissimilar to out-of-domain
datasets benefits model translation towards in-domain-like
sentences even without fine-tuning on in-domain datasets.

The use of word-level weights improves the baseline
model even better, from 24.37% to 26.14% BLEU and
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Data set e-commerce + out-of-domain
Language English Chinese

Training
Sentences 5,689,989

Running words 97,266,344 96,480,106
BPE vocabulary 33,484 45,867

Dev Sentences 3173 (item descriptions)
Running words 51,130 48,900

Test Sentences 739 (item descriptions)
Running words 19,034 18,262

Table 1: Corpus statistics for the e-commerce English→Chinese MT tasks.

Corpus Sent. count Token count
ood. sentences 5,153,191 93,427,867
+sent. weights 2,633,109 26,275,096
+word weights 3,873,264 36,617,395
+chunk weights 3,873,264 25,813,480

Table 2: Out-of-domain training corpus statistics. ood. sen-
tences indicates the number of sentences/tokens in the out-
of-domain corpus. +sent. weights indicates the number
of selected out-of-domain sentences where the weights of
the sentences are equal to 1. +word weights and +chunk
weights indicate the statistics of selected out-of-domain sen-
tences/tokens after applying word weights generation and
LCW methods as described in Section 2.2 and 2.3.

61.66% to 60.34% TER, respectively. In this approach, the
number of selected tokens is drastically reduced to 36.6M
from 93.4M tokens, nearly 61% drop in number of tokens
with improved translation performance. Word-level weights
also outperform sentence-level weights by 0.35% in BLEU
score and 0.48% in TER. It can be explained by the fact that
each word in the sentences are given its own similarity to the
in-domain datasets. Considering sentence-level weights set
all words in a sentence with the same weight, even though
part of the words in the sentences might not be related to the
in-domain corpus, word-level weights are more accurate and
effective.

Finally, chunk-level weights are generated from our
word-level weights based on LCW. Here we aim to train
the domain-adapted model from more consecutive segments
rather than single selected words. On top of word-level
weights, it improves by another 0.28% BLEU absolute and
0.24% TER, respectively. Out-of-domain sentences can be
split into chunks which can be related to the in-domain
and can be translated independently in terms of the context.
The selection of the consecutive chunk with in-domain-like
context can positively affect the training towards domain-
adapted model. By focusing on in-domain related and out-
of-domain unrelated part, word/chunk-level weights can ef-
fectively reduce the unnecessary noise in the out-of-domain
training data. Compared to continuing training without word
weights, we are able to further reduce the corpus by 72%

tokens (25.8M vs. 93.4M selected tokens), resulting in an
improvement of 2.11% BLEU absolute and 1.59% TER, re-
spectively. It should also be noted that with similar number
of tokens (25.8M vs. 26.3M), chunk-level weights outper-
forms sentence-level weights by 0.63% BLEU absolute and
0.72% TER.

Next, we further fine-tune the model with chunk-level
weights and obtain further improvements of 0.88% BLEU
absolute and 1.81% TER. Compared to directly fine-tuning
on the baseline, continuing training the model with chunk-
level weights and then fine-tuning improves translation re-
sults from 26.06% to 27.30% BLEU and 59.93% to 58.29%
TER, respectively.

Results from the study on the effect of using different
smoothing methods are shown in Table 4. The word weights
generated without using smoothing methods, where ŝt = st,
lead to poor translation quality of 21.38% from 24.37%
BLEU and 66.25% from 61.66% TER, respectively. We need
to smooth the word scores before thresholding because the
values of logPI(yt|yt−1

t−n) − logPO(yt|yt−1
t−n) are noisy. If

there are selected isolated words like ’,’ which have higher
scores than the surrounding text, it may cause rare vocabu-
lary problem after training.

The results from word weights computed from mean av-
eraged filter and normal distributed filter are relatively close,
25.99% vs. 26.14% BLEU and 60.70% vs. 60.34% TER,
respectively. These results are obtained via a filter with win-
dow size L = 5. In practice, we also tried setting window
size L = 3 and L = 7, but didn’t observe different results.
We found that the surrounding word scores have to be con-
sidered for smoothing in order to make the word weights wt

less noisy as well as more precisely representing the similar-
ity to the in-domain/out-of-domain.

Additionally, we also experimented with randomly se-
lecting words in the out-of-domain sentences with binary
mask. However, we observed a drop in the translation ac-
curacy.

3.3. Examples

In Table 5, we show an example for which the system trained
with word weights produces a better translation. The En-
glish sentence is ”non-spill spout with patented valve”. The
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Item descriptions
No. System description BLEU [%] TER [%]
1 Baseline 24.37 61.66
2 1 + continue training without word weights 24.31 61.69
3 1 + continue training with sentence weights 25.79 60.82
4 1 + continue training with word weights 26.14 60.34
5 1 + continue training with chunk weights 26.42 60.10
6 1 + fine-tuning on in-domain 26.06 59.93
7 5 + fine-tuning on in-domain 27.30 58.29

Table 3: E-commerce English → Chinese BLEU results on test set. Baseline is trained on mixed in-domain and out-of-domain
data. No. 2 is continuing training from baseline with objective defined as Eq. 1. No. 3 is continuing training from baseline with
sentence-level weights and No. 4 is with word weights, as defined in Section 2.2. No. 5 refers to assigning wt using LCW method
described in Section 2.3. No. 6 is equivalent to directly fine-tuning on in-domain datasets starting from the baseline model and
No. 7 is equivalent to fine-tuning on in-domain datasets after No. 5 is finished.

System BLEU [%] TER [%]
Baseline 24.37 61.66
+w.w. without smooth. 21.38 66.25
+w.w. (mean smooth.) 25.99 60.70
+w.w. (gauss. smooth.) 26.14 60.34

Table 4: Study on the effect of different smoothing meth-
ods for word weights generation. Baseline is the same as
before. w.w. without smoothing means the word weights
(w.w.) are computed without smoothing in the log domain.
w.w. (mean smooth.) indicates smoothing the word scores
via using a mean average filter before thresholding and w.w.
(gauss. smooth.) indicates using a normal distributed fil-
ter before thresholding. The approaches regarding different
smoothing methods are described in Section 2.2.

word ”spout” is rare in our data, appearing in the out-of-
domain training sentences only once. The Chinese side of
this training example can be seen in Figure 1 together with
the weights assigned to the individual words by our method.
When smoothing is applied, isolated Chinese words such as
”空气” (”air”) are removed. With the longest consecutive
words (LCW) method, the only remaining chunk is ”防/溢
出/喷口/内” (”inside the non-spills spout”), which is related
to our in-domain data. The system with word weights is then
trained only on this chunk on the target side, while the base-
line model is trained on the entire sentence and generates
inappropriate translations.

4. Discussions
The domain adaptation techniques (sentence-level/chunk-
level/word-level) introduced in this paper are all derived from
word weights generation. They aim to select out-of-domain
sentences/chunks/words which are more related to in-domain
corpus and unrelated to out-of-domain corpus. The word
weights are computed prior to system tuning via the loga-
rithm difference of LM probability scoring and are then used

for tuning the sequence-to-sequence model. By measuring
domain similarity with external criteria such as LM, this kind
of out-of-domain data selection is able to highlight the in-
domain-related and out-of-domain-unrelated parts and leads
to less variation and errors in our e-commerce domain adap-
tation. In addition, the selected out-of-domain segments have
to be smoothed in order to reduce noise.

5. Conclusions

In this work, we generate word-level weights by calculat-
ing the logarithm difference of the probability of two ex-
ternal language models for domain adaptation. This ap-
proach better selects the out-of-domain segments related to
e-commerce domain, and requires fewer tokens for training.
We experimented with continuing training models with sen-
tence/chunk/word weights and show that they all give trans-
lation improvement in terms of BLEU and TER compared to
continuing training without word weights. Experiments on
our in-house English-Chinese datasets also show that contin-
uing training with word weights then fine-tuning improves
results over directly fine-tuning on baseline model.

In future, with the computed word weights as the ini-
tial parameters, we want to devise strategies to make online
domain adaptation possible by dynamically updating word
weights during training, which could in turn lead the in-
domain data translation to better match its references.
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Abstract

Human language evolves with the passage of time. This
makes historical documents to be hard to comprehend
by contemporary people and, thus, limits their accessi-
bility to scholars specialized in the time period in which
a certain document was written. Modernization aims at
breaking this language barrier and increase the accessi-
bility of historical documents to a broader audience. To
do so, it generates a new version of a historical docu-
ment, written in the modern version of the document’s
original language. In this work, we propose several
machine translation approaches for modernizing histori-
cal documents. We tested these approaches in different
scenarios, obtaining very encouraging results.

1. Introduction

Historical documents are an important part of our cul-
tural heritage. With the aim of their preservation, there
is an increase need of digitalazing—creating a digital
text version which can be searched and automatically
processed— of historical documents [1]. However, there
is an additional difficulty created by their linguistic prop-
erties: On the one hand, human language evolves with
the passage of time. On the other hand, due to a lack of a
spelling convention, orthography changes depending on
the author and time period in which a given document
was written. These problems make historical documents
harder to read, and makes it harder to digitalize them
(since their digital text version needs to be searched and
automatically processed).

The orthography problem has been well researched
in the literature [2, 3, 4, 5, 6, 7]. The proposed solu-
tion that aims to solve this problem is known as spelling
normalization, and its goal is to adapt the document’s
spelling to modern standards in order to achieve an or-
thography consistency and increase the document’s read-

ability. However, while is true that spelling normaliza-
tion makes historical documents easier to read, they are
still hard to comprehend by contemporary people. This
problem limits the accessibility of historical documents
to scholars specialized in the time period in which the
document was written.

Modernization aims at breaking the language barrier,
generating a new version of a historical document in
the modern version of the language in which the docu-
ment was originally written (see Fig. 1 for an example).
Therefore, not only the orthography is updated. The
lexicon and grammar are also modified in order to match
the modern use of the document’s language. The main
drawback of this solution is that part of the document’s
original intention could be lost in the process (e.g., part
of the rhyme in Fig. 1 is lost for the sake of clarity).
Nonetheless, the document’s clarity is increased and,
thus, its accessibility to a broader audience.

To the best of our knowledge, modernization of
historical documents has been less researched in the
literature. A shared task was organized in order to
translate historical text to contemporary language [9].
The shared task’s main goal was spelling normalization.
However, they also tackle modernization using a set of
rules. Finally, there was an approach to modernize his-
torical documents using Statistical Machine Translation
(SMT) [10]. In this work, we tackle modernization by
using an SMT and Neural Machine Translation (NMT)
approach. Additionally, since a frequent problem when
working with historical documents is the scarce availabil-
ity of parallel training data [5], we created two small par-
allel corpora (see Section 3.1) and generated synthetic
data using backtranslation [11]. Our main contributions
are the followings:

• First use, to the best of our knowledge, of NMT
and backtranslation for historical documents mod-
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Shall I compare thee to a summer’s day?
Thou art more lovely and more temperate:
Rough winds do shake the darling buds of May,
And summer’s lease hath all too short a date:
Sometime too hot the eye of heaven shines,
And often is his gold complexion dimm’d;
And every fair from fair sometime declines,
By chance or nature’s changing course untrimm’d;
But thy eternal summer shall not fade
Nor lose possession of that fair thou ow’st;
Nor shall Death brag thou wander’st in his shade,
When in eternal lines to time thou grow’st;
So long as men can breathe or eyes can see,
So long lives this, and this gives life to thee.

Shall I compare you to a summer day?
You’re lovelier and milder.
Rough winds shake the pretty buds of May,
and summer doesn’t last nearly long enough.
Sometimes the sun shines too hot,
and often its golden face is darkened by clouds.
And everything beautiful stops being beautiful,
either by accident or simply in the course of nature.
But your eternal summer will never fade,
nor will you lose possession of your beauty,
nor shall death brag that you are wandering in the underworld,
once you’re captured in my eternal verses.
As long as men are alive and have eyes with which to see,
this poem will live and keep you alive.

Figure 1: Example of modernizing a historical document. The original text is Shakespeare Sonnet 18. The modernized
version of the Sonnet was obtained from [8].

ernization.

• Comparison of approaches based on SMT and
NMT.

• Experimented with three historical corpora—two
of which were created for this work—from three
different time periods and two different languages.

The rest of this document is structure as follows:
Section 2 introduces the different Machine Translation
(MT) approaches used in our work. Then, Section 3
describes the experiments conducted in order to assess
our proposal. After that, Section 4 presents and discusses
the results of those experiments. Finally, in Section 5,
conclusions are drawn.

2. Machine Translation

In this section, we present the machine translation ap-
proaches used in our work.

2.1. Statistical Machine Translation

Given a source sentence x, SMT aims at finding its best
translation ŷ [12]:

ŷ = argmax
y

Pr(y | x) (1)

For years, the prevailing approach to compute this
expression have been phrase-based models [13]. These
models rely on a log-linear combination of different
models [14]: namely, phrase-based alignment models,
reordering models and language models; among oth-
ers [15, 16]. However, more recently, this approach has
shifted into neural models (see Section 2.2).

2.2. Neural Machine Translation

NMT is the neural approach to compute Eq. (1). Fre-
quently, it relies on a Recurrent Neural Network (RNN)
encoder-decoder framework. In this framework, the
source sentence is projected into a distributed represen-
tation at the encoding step. At the decoding step, the
decoder generates its translation word by word [17].

The system’s input is a sequence of words in the
source language. Each source word is linearly projected
to a fixed-sized real-valued vector through an embedding
matrix. These word embeddings are feed into a bidirec-
tional [18] Long Short-Term Memory (LSTM) [19] net-
work, resulting in a sequence of annotations produced
by concatenating the hidden states from the forward and
backward layers.

The model features an attention mechanism [20],
which allows the decoder to focus on parts of the input
sequence, computing a weighted mean of annotations se-
quence. A soft alignment model computes these weights
by weighting each annotation with the previous decoding
state.

The decoder is another LSTM network, conditioned
by the representation computed by the attention model
and the last word generated. Finally, a deep output
layer [21] computes a distribution over the target lan-
guage vocabulary.

The model is trained by means of stochastic gradient
descend, applied jointly to maximize the log-likelihood
over a bilingual parallel corpus. At decoding time, the
model approximates the most likely target sentence with
beam-search [17].
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2.3. Backtranslation

Backtranslation [11] has become the norm when build-
ing state-of-the-art NMT systems, especially in resource-
poor scenarios [22]. It is a useful technique to increase
the training data by creating synthetic text from mono-
lingual data. Given a monolingual corpus in the target
language, and an MT system trained to translate from
the target language to the source language, the synthetic
data is generated by translating the monolingual corpus
with the MT system. After that, the synthetic data is used
as the source part of the corpus, and the monolingual
data as the target part. Finally, this new corpus is mixed
with the available training data in order to train a new
MT system.

In this work, to generate the synthetic data, we trans-
late the monolingual data using an ad-hoc SMT system
trained with the corpus’ training partition. Addition-
ally, since the datasets are considerable small, prior to
mixing the synthetic corpus with the training partition,
we replicate several times the training data in order to
match the size of the synthetic data and avoid overfit-
ting [23]. Finally, we trained an NMT system with this
new corpus.

3. Experimental Framework

In this section, we present the corpora and metrics, and
describe the MT systems used during the experimental
session.

3.1. Corpora

The first corpus used to assess our proposal was the
Dutch Bible [9]. This corpus consists in a collection of
different versions of the Dutch Bible. More precisely,
a version from 1637, another from 1657, another from
1888 and another from 2010. All versions contain the
same text except for the 2010 version, which is missing
the last books. Moreover, the authors mentioned that the
translation from this last version is not very reliable. Ad-
ditionally, due to Dutch not evolving significantly during
this period, 1637 and 1657 versions are fairly similar.
For this reason, we decided to only use the 1637 ver-
sion—considering this as the original document—and
the 1888 version—considering 19th century Dutch as
modern Dutch.

To create the synthetic corpus (see Section 2.3), we
collected all 19th century Dutch books available at the

Digitale Bibliotheek voor de Nederlandse letteren1 and
used them as monolingual data.

The second corpus we used was El Quijote. We
built this corpus using a version [24] of the original 17th

century Spanish novel by Miguel de Cervantes, and a
21st century version modernized by Andrés Trapiello [25].
The first step was to split each document into sentences.
Since the 17th century version was faithful to the origi-
nal manuscript (in which each document line is formed
by a very few words), we replaced line breaks by spaces
to create a single sentence, and removed empty lines.
For consistency, we did the same to the 21st century ver-
sion. After that, we split each document into sentences
by adding line breaks to relevant punctuation (i.e., dots,
quotation marks, admiration marks, etc). Then, to ensure
consistency, we checked special symbols (e.g., quotation
marks) and made sure that the same character was used
in both versions. Finally, in order to create a parallel cor-
pus, we aligned both documents using Hunalign [26].

Since the content of this corpus was a novel, we
decided that, to create the synthetic corpus, it would
be best to use monolingual data coming from Spanish
literature. For this reason and, considering that Spanish
hasn’t changed significantly over the last decades, we
decided to collect free-of-right late 20th century Spanish
novels from Project Gutenberg2.

Finally, as a third corpus, we selected El Conde Lu-
canor. We built this corpus using a version of the orig-
inal 14th century Spanish novel by Don Juan Manuel,
and a 21st century version modernized by Luis López
Nieves [27]. To create the parallel version, we followed
the same steps than with El Quijote. However, unlike
with El Quijote, the resulting corpus was too small to be
able to use for training an MT system. Therefore, we
decided to use it only as a test. Unable to find a suitable
training corpus, we decided to test El Conde Lucanor us-
ing the systems created for El Quijote—despite the fact
that the original documents were written three centuries
apart from one another.

Table 1 presents the corpora statistics.

3.2. Metrics

In order to asses our proposal, we made use of the fol-
lowing well-known metrics:

• BiLingual Evaluation Understudy (BLEU) [28]:
computes the geometric average of the modified

1http://dbnl.nl/
2https://www.gutenberg.org/
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Dutch Bible El Quijote El Conde Lucanor

Train

|S| 35.2K 10K -
|T | 870.4/862.4K 283.3/283.2K -
|V | 53.8/42.8K 31.7/31.3K -

Development

|S| 2000 2000 -
|T | 56.4/54.8K 53.2/53.2K -
|V | 9.1/7.8K 10.7/10.6K -

Test

|S| 5000 2000 2252
|T | 145.8/140.8K 41.8/42.0K 62.0/56.7K
|V | 10.5/9.0K 8.9/9.0K 7.4/8.6K

Monolingual

|S| 4.1M 567.0K -
|T | 88.3M 9.5M -
|V | 2.0M 470.4K -

Table 1: Corpora statistics. |S| stands for number of sentences, |T | for number of tokens and |V | for size of the
vocabulary. Monolingual refers to the monolingual data used to create the synthetic data. M denotes million and K
thousand.

n-gram precision, multiplied by a brevity factor
that penalizes short sentences.

• Translation Error Rate (TER) [29]: computes
the number of word edit operations (insertion, sub-
stitution, deletion and swapping), normalized by
the number of words in the final translation.

Confidence intervals (p = 0.05) were computed for
all metrics by means of bootstrap resampling [30].

3.3. MT Systems

We trained the SMT systems with Moses [31], follow-
ing the standard procedure: we estimated a 5-gram lan-
guage model—smoothed with the improved KneserNey
method—using SRILM [32], and optimized optimized
the weights of the log-lineal model with MERT [33].
Additionally, we lowercased and tokenized the corpora
using the standard scripts and, later, truecased the trans-
lated text using Moses’ truecaser.

To train the NMT systems, we used OpenNMT [34].
We used LSTM units, following the findings from [35].
We set the size of the word embedding and LSTM units
to 1024. We used Adam [36] with a learning rate of
0.0002 [37]. The beam size was set to 6. Finally, the
corpora were lowercased and tokenized—and, later, true-
cased and detokenized—using OpenNMT’s tools.

In order to reduce the vocabulary, we applied Byte
Pair Encoding (BPE) [38] to both SMT and NMT sys-
tems. We trained the models with a joint vocabulary of
32000 BPE units.

4. Results

In this section, we present and discuss the results of the
experiments conducted in order to assess our proposal.
Table 2 presents the experimental results.

Dutch Bible contained an additional baseline which
consisted in generating a modernized version of the text
by applying a set of rules to the original document [9].
This second baseline improved significantly (close to 40
BLEU points and 30 TER points) the standard baseline
of considering the original document as the modern-
ized version. However, the SMT approach improved
those results even more (near 30 BLEU points and 15
TER points of improvement with respect to the second
baseline, and 70 BLEU points and 50 TER points with
respect to the standard baseline). The NMT approach
yielded better results than the standard baseline (and im-
provement of around 25 BLEU points and 5 TER points),
but worse results than the second baseline and the SMT
approach. Most likely, this is due to the training corpus
being too small, which is a well-known problem in NMT.
Finally, the backtranslation approach yielded the worst
results. These results represent an improvement over the
standard baseline in term of BLEU (around 4 points),
and a deterioration in terms of TER (around 8 points).
Most likely, this is due to the monolingual data used for
backtranslation not being similar enough to the training
data.

The experiments using El Quijote behaved simi-
larly—taking into account that the only available base-
line is the standard one—to Dutch Bible: The SMT
approached yielded the best results (an improvement of
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System Dutch Bible El Quijote El Conde Lucanor

BLEU TER BLEU TER BLEU TER

Baseline 13.5± 0.3 57.0± 0.3 36.5± 0.8 43.3± 1.1 5.8± 0.3 89.6± 1.0
Baseline2 50.8± 0.4 26.5± 0.3 - - - -

SMT 80.1± 0.5 9.9± 0.3 58.9± 1.0 29.4± 1.2 8.4± 0.3 83.8± 1.0
NMT 38.0± 0.6 51.7± 2.2 37.4± 1.2 51.5± 2.0 2.7± 0.2 99.5± 2.0
NMTSynthetic 17.4± 0.5 65.6± 1.7 45.2± 1.3 50.6± 3.5 3.1± 0.2 165.1± 8.2

Table 2: Experimental results. Baseline system corresponds to considering the original document as the modernized
version. Baseline2 came with the Dutch Bible and is a modernized version of the text generated by applying a set of
rules to the original document [9]. SMT and NMT are the SMT and NMT approaches respectively. NMTSynthetic is the
NMT system trained with the synthetic data generated through backtranslation. Best results are denoted in bold.

close to 22 BLEU points and 14 TER points). The results
yielded by the NMT approach were not significantly dif-
ferent to the baseline in terms of BLEU, and represented
close to a 10 points deterioration in terms of TER. In
this case, however, the backtranslation approach yielded
nearly a 10 points improvement in terms of BLEU, and
the same TER results as the NMT approach.

Not being able to obtain enough suitable training
data for El Conde Lucanor, we used the same systems
than for El Quijote. However, these documents were
written three centuries apart from one another (El Conde
Lucanor is written in 14th century Spanish and El Qui-
jote in 17th century Spanish). Therefore, the obtained
results contained a low translation quality. Nonetheless,
it is worth noting that the SMT approach yielded im-
provements over the baseline (around 3 BLEU points
and 6 TER points). However, the NMT and backtranslat-
ing approached yielded a deterioration of 3 BLEU points
(in both cases) and 10 and 75 TER points respectively.

In general, SMT yielded the best results in all cases.
NMT was able to improve Dutch Bible’s baseline, yield-
ing similar results to El Quijote’s baseline and worse
results than El Conde Lucanor’s baseline. Finally, de-
spite being successfully used in resources-poor scenar-
ios, backtranslation was only able to improve results for
the experiment using El Quijote, and these results were
worse than the ones yielded by the SMT approach.

4.1. Qualitative Analysis

Table 2 shows some examples of sentences modernized
using the different MT approaches.

The first example is a sentence from El Quijote.
The hypothesis generated by the SMT approach is very
closed to the reference. The main differences are a
change in the order of actions (the original sentence

says Y dejando de comer, se levantó, which is changed
by the hypothesis into Y levantándose, dejó de comer)
and some changes in the conjugation of verbs (e.g., de-
jando is changed into dejó). However, the main goal
of modernization is not to generate a perfect equivalent
version, but to make the document easier to compre-
hend—making the overall meaning more important than
the exact choice of words. While sentences like these
are penalized by the automatic metrics, they accomplish
modernization’s goal.

The hypothesis generated by the NMT approach
follows the same structure than the SMT hypothesis (it
makes the same reordering and conjugation changes)
but contains non-existent words (e.g., ancen) and has
some errors (e.g, a los pies in stead of puesto a caballo).
Therefore, some parts are easier to comprehend than in
the original version, but the meaning of the sentence is
not clear.

Finally, the hypothesis generated by the backpropa-
gation approach is almost the same as the one generated
by the SMT approach (the only change is fierded in stead
of fiereza). While this hypothesis is less correct than the
SMT one, they are both equally easy to comprehend.

The second example is from El Conde Lucanor,
whose experiments were conducted using the systems
trained with El Quijote. As a result, all the hypothe-
sis are hard to comprehend. While the automatic met-
rics heavily penalize the backtranslation approach, in
this case, is the one which is closer to modern Spanish.
Moreover, it is the only hypothesis which preserves the
name of the main characters (Lucanor and Patronio).
Looking through the whole texts, the SMT and NMT
hypothesis frequently changed the characters named into
non-existent words, while the backtranslation approach
rarely modified them. Finally, having trained the sys-
tems with El Quijote has a visible effect in the SMT and
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El Quijote
Original: Y, leuantandose, dexó de comer, y fue a quitar la cubierta de la primera imagen, que mostro ser la de San Iorge puesto a

cauallo, con vna serpiente enroscada a los pies, y la lança atrauessada por la boca, con la fiereça que suele pintarse.
Modernized: Y dejando de comer, se levantó y fue a quitar la cubierta de la primera imagen, que resultó ser la de san Jorge a

caballo, con una serpiente enroscada a los pies y la lanza atravesándole la boca, con la fiereza que suele pintarse.

SMT: Y levantándose, dejó de comer, y fue a quitar la cubierta de la primera imagen, que mostró ser la de San Jorge puesto a
caballo, con una serpiente enroscada a los pies, y la lanza atravesada por la boca, con la fiereza que suele pintarse.

NMT: Y levantándose, dejó de comer, y fue a quitar la cubierta de la primera ancen, que mostró ser la de San Marorge a los pies
y la lanza ahabesada por la boca;

NMTSynthetic: Y levantándose, dejó de comer, y fue a quitar la cubierta de la primera imagen, que mostró ser la de San Jorge puesto a
caballo, con una serpiente enroscada a los pies, y la lanza atravesada por la boca, con la fierded que suele pintarse.

El Conde Lucanor
Original: -Señor conde Lucanor -dixo Patronio-, vien entiendo que el mı́o consejo non vos faze grant mengua, pero vuestra

voluntad es que vos diga lo que en esto entiendo, et vos conseje sobre ello, fazerlo he luego.
Modernized: -Señor Conde Lucanor -dijo Patronio-, bien sé que mi consejo no os hace mucha falta, pero, como confiáis en mı́,

SMT: -– Señor conde Lucanor -dijo Patroniorosa, vien entiendo que el mı́o consejo non vos face grant mengua, pero vuestra
voluntad es que vos diga lo que en esto entiendo, et vos aconseje en ello, ferlo he luego .

NMT: Señor conde Olcanor dijo dijo Pacasos –dijo en entiendo que el mı́o consejo non os fazo felimengua y vuestra merced es
que vos diga lo que en esto entiendo.

NMTSynthetic: -Señor conde Lucanor -dijo Patronio, vien entiendo que el mı́o consejo non es face grant mengua, pero vuestra voluntad
es que vos diga lo que en esto entiendo, et vos conseje sobre ello, también yo he dicho.

Table 3: Examples of modernizing a sentence using the different MT approaches. SMT and NMT are the SMT and
NMT approaches respectively. NMTSynthetic is the NMT system trained with the synthetic data generated through
backtranslation.

NMT approaches (with verbs conjugations such as ferlo,
or expression such as vuestra merced). This effect, how-
ever, is not so visible in the backtranslation hypothesis.
All in all, neither hypothesis accomplishes the goal of
improving the comprehension of the original sentence.
Nonetheless, it is worth noting that this was a tricky
example since the original sentence is modernized into a
much shorter sentence (which reflects that 14th century
Spanish used longer expressions than modern Spanish).

5. Conclusions and Future Work

In this work we proposed several machine translation
approaches to modernize historical documents in order
to break the language barrier and increase their accessi-
bility to a broader audience.

We tested our approaches using three historical datasets
(two of which were created for this work) from three
different time periods and two different languages.

Our first approach was based in SMT and yielded,
for all cases, the best results. With the exception of the
dataset for which there were not available any suitable
training data, this approach yielded significant improve-
ments of around 22 to 67 BLEU points and 14 to 48
TER points.

Since the available training data was fairly small,
the approach based on NMT produced less satisfactory
results. While it was able to yield improvements for one
dataset, the rest of the experiment resulted in either not
significantly different than the baseline, or yielding a
deterioration in terms of translation quality.

Finally, despite being successfully used in resources-
poor scenarios, backtranslation was only able to improve
results for one dataset, and only in terms of BLEU. Our
best hypothesis is that historical documents are very
language-specific and, therefore, choosing the mono-
lingual corpus to use for creating the synthetic data is
extremely important. While we tried to create the mono-
lingual datasets using similar topics, the corpora’s topics
were too specific: religious texts, a cavalry novel and
medieval tales.

In a future work, we would like to research the rela-
tion between the domains of the monolingual and train-
ing corpora deeper. Additionally, we want to explore
the use of data selection techniques for constructing the
monolingual corpus to use for backtranslation, and to
create a training partition for cases in which we do not
have suitable training data available (as was the case
with El Conde Lucanor).
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Abstract
Multi-source translation systems translate from multiple lan-
guages to a single target language. By using information
from these multiple sources, these systems achieve large
gains in accuracy. To train these systems, it is necessary to
have corpora with parallel text in multiple sources and the
target language. However, these corpora are rarely complete
in practice due to the difficulty of providing human transla-
tions in all of the relevant languages. In this paper, we pro-
pose a data augmentation approach to fill such incomplete
parts using multi-source neural machine translation (NMT).
In our experiments, results varied over different language
combinations but significant gains were observed when us-
ing a source language similar to the target language.

1. Introduction
Machine Translation (MT) systems usually translate one
source language to one target language. However, in many
real situations, there are multiple languages in the corpus of
interest. Examples of this situation include the multilingual
official document collections of the European parliament [1]
and the United Nations [2]. These documents are manually
translated into all official languages of the respective organi-
zations. Many methods have been proposed to use these mul-
tiple languages in translation systems to improve the trans-
lation accuracy [3, 4, 5, 6]. In almost all cases, multilin-
gual machine translation systems output better translations
than one-to-one systems, as the system has access to multi-
ple sources of information to reduce ambiguity in the target
sentence structure or word choice.

However, in contrast to the more official document col-
lections mentioned above where it is mandated that all trans-
lations in all languages, there are also more informal multi-
lingual captions such as those of talks [7] and movies [8]. Be-
cause these are based on voluntary translation efforts, large
portions of them are not translated, especially into languages
with a relatively small number of speakers.

Nishimura et al. [9] have recently proposed a method for
multi-source NMT that is able to deal with the case of miss-
ing source data encountered in these corpora. The imple-
mentation is simple: missing source translations are replaced
with a special symbol 〈NULL〉 as shown in Figure 1(a). This

How are you?

<NULL>

Ako sa máte?

Cs

En
Sk

Original

Missing

Original

(a) Multi-source NMT with filling in a symbol [9]

How are you?

Jak se máte?

Ako sa máte?

Cs

En

Sk

Original

Pseudo

Original

How are you?

Ako sa máte?

Original

Original
Data Augmentation

with trained multi-source NMT

{En, Sk}-to-Cs

En

Sk

(b) Proposed Method: Multi-source NMT with data augmentation

Figure 1: Example of multi-source NMT with an incomplete
corpus; The language pair is {English, Czech}-to-Slovak and
the translation of Czech is missing.

method allows us to use incomplete corpora both at training
time and test time, and multi-source NMT with this method
was shown to achieve higher translation accuracy. If the
model is trained on corpora with a large number of 〈NULL〉
symbols on the source side, a large number of training exam-
ples will be different from test time, when we actually have
multiple sources. Thus, these examples will presumably be
less useful in training a model intended to do multi-source
translation. In this paper, we propose an improved method
for utilizing multi-source examples with missing data: us-
ing a pseudo-corpus whose missing translations are filled up
with machine translation outputs using a trained multi-source
NMT system as shown in Figure 1(b). Experimental results
show that the proposed method is a more effective method to
incorporate incomplete multilingual corpora, achieving im-
provements of up to about 2 BLEU over the previous method
where each missing input sentence is replaced by 〈NULL〉.
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2. Related Work
2.1. Multi-source NMT

There are two major approaches to multi-source NMT; multi-
encoder NMT [10] and mixture of NMT Experts [11]. In
this work, we focus on the multi-encoder NMT that showed
better performance in most cases in Nishimura et al. [9].

Multi-encoder NMT [10] is similar to the standard at-
tentional NMT framework [12] but uses multiple encoders
corresponding to the source languages and a single decoder.

Suppose we have two LSTM-based encoders and their
hidden and cell states at the end of the inputs are h1, h2

and c1, c2, respectively. Multi-encoder NMT initializes its
decoder hidden state h and cell state c using these encoder
states as follows:

h = tanh(Wc[h1;h2]) (1)

c = c1 + c2 (2)

Attention is then defined over encoder states at each time
step t and resulting context vectors d1t and d2t are concate-
nated together with the corresponding decoder hidden state
ht to calculate the final context vector h̃t.

h̃t = tanh(Wc[ht; d
1
t ; d

2
t ]) (3)

Our multi-encoder NMT implementation is basically
similar to the original one [10] but has a difference in
its attention mechanism. We use global attention used in
Nishimura et al. [9], while Zoph and Knight used local-p
attention. The global attention allows the decoder to look at
everywhere in the input, while the local-p attention forces to
focus on a part of the input [13].

2.2. Data Augmentation for NMT

Sennrich et al. proposed a method to use monolingual train-
ing data in the target language for training NMT systems,
with no changes to the network architecture [14]. It first
trains a seed target-to-source NMT model using a parallel
corpus and then translates the monolingual target language
sentences into the source language to create a synthetic paral-
lel corpus. It finally trains a source-to-target NMT model us-
ing the seed and synthetic parallel corpora. This very simple
method called back-translation makes effective use of avail-
able resources, and achieves substantial gains. Imamura et
al. proposed a method that enhances the encoder and atten-
tion using target monolingual corpora by generating mutliple
source sentences via sampling as an extension of the back-
translation [15].

There are also other approaches for data augmentation
other than back-translation. Wang et al. proposed a method
of randomly replacing words in both the source sentence and
the target sentence with other random words from their cor-
responding vocabularies [16]. Kim and Rush proposed a

sequence-level knowledge distillation in NMT that uses ma-
chine translation results by a large teacher model to train a
small student model as well as ground-truth translations [17].

Our work is an extension of the back-translation ap-
proach in multilingual situations by generating pseudo-
translations using multi-source NMT.

3. Proposed Method
We propose three types of data augmentation for multi-
encoder NMT; “fill-in”, “fill-in and replace” and “fill-in and
add.” Firstly, we explain about the data requirements and
overall framework using Figure 1(b). We used three lan-
guages; English, Czech and Slovak. Our goal is to get the
Slovak translation, and to do so we take three steps. There
are not any missing data in English translations, but Slo-
vak and Czech translations have some missing data. In the
first step, we train a multi-encoder NMT model (Source:
English and Slovak, Target: Czech) to get Czech pseudo-
translations using the baseline method, which is to replace a
missing input sentence with a special symbol 〈NULL〉. In
the second step, we create Czech pseudo-translations using
multi-encoder NMT which was trained on the first step. We
conducted three types of augmentation, which we introduce
later. Finally in the third step, we switch the role of Czech
and Slovak, in other words, we train a new multi-encoder
NMT model (Source: English and Czech, Target: Slovak).
At this time, we use Slovak pseudo-translations in the source
language side. This method is similar to back-translation but
taking advantage of the fact that we have an additional source
of knowledge (Czech or Slovak) when trying to augment the
other language (Slovak or Czech respectively).

We next introduce three types of augmentation. Figure 2
illustrates their examples in {English, Czech}-to-{Slovak}
case where one Czech sentence is missing.

(a) fill-in: where only missing parts in the corpus are filled
up with pseudo-translations.

(b) fill-in and replace: where we both augment the miss-
ing part and replace original translations with pseudo-
translations in the source language except English whose
translations has not any missing data. The motivation be-
hind this method is not to use unreliable translation. Mor-
ishita et al. [18] demonstrated the effectiveness of applying
back-translation for an unreliable part of a provided corpus.
Translations of TED talks are from many independent volun-
teers, so there may be some differences between translations
other than original English, or even they may include some
free or over-simplified translations. We aim to fill such a gap
using data augmentation.

(c) fill-in and add: where we both augment the missing part
and added pseudo-translations from original translations in
the source language except English. This helps prevent in-
troduction of too much noise due to the complete replace-
ment of original translations with pseudo-translations in the
second method.
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How are you?

Jak se máte?

Ako sa máte?

Cs
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Original
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Original
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Original

Dobrý deň

Original

Ahoj
Original

(a) fill-in

How are you?

Jak se máte?

Ako sa máte?

Cs

En

Sk

Original

Pseudo

Original

Hello

Original

Dobrý deň
Original

Čau
Pseudo

(b) fill-in and replace

How are you?

Jak se máte?

Ako sa máte?

Cs

En

Sk

Original

Pseudo

Original

Hello

Original

Dobrý deň
Original

Čau
Pseudo

Hello

Original

Dobrý deň
Original

Ahoj
Original

(c) fill-in and add

Figure 2: Example of three types of augmentation; Language
Pair is {English, Czech}-to-{Slovak} and Czech translation
corresponding to “How are you?” is missisng. In this exam-
ple, the dotted background indicates the pseudo-translation
produced from multi-source NMT and the white background
means the original translation.

4. Experiment
We conducted MT experiments to examine the performance
of the proposed method using actual multilingual corpora of
TED Talks.

4.1. Data

We used a collection of transcriptions of TED Talks and
their multilingual translations. The numbers of these volun-
tary translations differs significantly by language. We chose

Table 1: “train” shows the number of available training sen-
tences, and “missing” shows the number and the fraction of
missing sentences in comparison with English ones.

Pair Trg train missing

en-hr/sr hr 118949 35564 (29.9%)
sr 133558 50203 (37.6%)

en-sk/cs sk 100600 58602 (57.7%)
cs 59918 17380 (29.0%)

en-vi/id vi 160984 87816 (54.5%)
id 82592 9424 (11.4%)

three different language sets for the experiments: {English
(en), Croatian (hr), Serbian (sr)}, {English (en), Slovak (sk),
Czech (cs)}, and {English (en), Vietnamese (vi), Indonesian
(id)}. Since the great majority of TED talks are in English,
the experiments were designed for the translation from En-
glish to another language with the help of the other language
in the language set, with no missing portions in the English
sentences. Table 1 shows the number of training sentences
for each language set. At test time, we experiment with a
complete corpus with both source sentences represented, as
this is the sort of multi-source translation setting that we are
aiming to create models for.

4.2. Baseline Methods

We compared the proposed methods with the following three
baseline methods.

One-to-one NMT: a standard NMT model from one source
language to another target language. The source language is
fixed to English in the experiments. If the target language
part is missing in the parallel corpus, such sentences pairs
cannot be used in training so they are excluded from the train-
ing set.

Multi-encoder NMT with back-translation: a multi-
encoder NMT system using English-to-X NMT to fill up the
missing parts in the other source language X.1

Multi-encoder NMT with 〈NULL〉: a multi-encoder NMT
system using a special symbol 〈NULL〉 to fill up the missing
parts in the other source language X [9].

4.3. NMT settings

NMT settings are the same for all the methods in the ex-
periments. We use bidirectional LSTM encoders [12], and
global attention and input feeding for the NMT model [13].
The number of dimensions is set to 512 for the hidden and
embedding layers. Subword segmentation was applied using
SentencePiece [19]. We trained one subword segmentation
model for English and another shared between the other two

1This is not exactly back-translation because the pseudo-translations are
not from the target language but from the other source language (English) in
our multi-source condition. But we use this familiar term here for simplicity.
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languages in the language set because the amount of train-
ing data for the languages other than English was small. For
parameter optimization, we used Adam [20] with gradient
clipping of 5. We performed early stopping, saving parame-
ter values that had the best log likelihoods on the validation
data and used them when decoding test data.

4.4. Results

Table 2 shows the results in BLEU [21]. We can see that our
proposed methods demonstrate larger gains in BLEU than
baseline methods in two language sets: {English, Croatian,
Serbian}, {English, Slovak, Czech}. On these pairs, we can
say that our proposed method is an effective way for using
incomplete multilingual corpora, exceeding other reasonably
strong baselines. However, in {English, Vietnamese, Indone-
sian}, our proposed methods obtained lower scores than the
baseline methods. We observed that the improvement by the
use of multi-encoder NMT against one-to-one NMT in the
baseline was significantly smaller than the other language
sets, so multi-encoder NMT was not as effective compared to
one-to-one NMT in the first place. Our proposed method is
affected by which languages to use, and the proposed method
is likely more effective for similar language pairs because the
expected accuracy of the pseudo-translation gets better by the
help of lexical and syntactic similarity including shared sub-
word entries.

5. Discussion
5.1. Different Types of Augmentation

We examined three types of augmentation: “fill-in”, “fill-in
and replace”, “fill-in and add”. In Table 2, we can see that
there were no significant differences among them, despite the
fact that their training data were very different from each
other. We conducted additional experiments using incom-
plete corpora with lower quality augmentation by one-to-one
NMT to investigate the differences of the three types of aug-
mentation. We created three types of pseudo-multilingual
corpora using back-translation from one-to-one NMT and
trained multi-encoder NMT models using them. Our expec-
tation here was that the aggressive use of low quality pseudo-
translations caused to contaminate the training data and to
decrease the translation accuracy.

Table 3 shows the results. In {English, Croatian, Ser-
bian} and {English, Slovak, Czech}, we obtained significant
drop in BLEU scores with the aggressive strategies (“fill-in
and replace” and “fill-in and add”), while there are few differ-
ences in {English, Vietnamese, Indonesian}. One possible
reason is that the quality of pseudo-translations by one-to-
one NMT in Indonesian and Vietnamese was better than the
other languages; in other words, the BLEU from one-to-one
NMT in Table 2 was sufficiently good without multi-source
NMT. Thus the translation performance for Croatian, Ser-
bian, Slovak and Czech could not improve in the experiments
here due to noisy pseudo-translations of those languages.

Contrary, the BLEU from “fill-in and add” was the highest
when the target language was Indonesian. We hypothesize
that this is due to much smaller fraction of the missing parts
in Indonesian corpus as shown in Table 1, so there should
be little room for improvement if we fill in only the miss-
ing parts even if the accuracy of the pseudo-translations is
relatively high.

5.2. Iterative Augmentation

It can be noted that if we have a better multi-source NMT
system, it can be used to produce better pseudo-translations.
This leads to a natural iterative training procedure where we
alternatively update the multi-source NMT systems into the
two target languages.

Table 4 shows the results of {English, Croatian, Ser-
bian}. We found that this produced negative results; BLEU
decreased gradually in every step. We observed very similar
results in the other language pairs, while we omit the actual
numbers here. This indicates that the iterative training may
be introducing more noise than it is yielding improvements,
and thus may be less promising than initially hypothesized.

5.3. Non-parallelism

A problem in the use of multilingual corpora is non-
parallelism. In case of TED multilingual captions, they are
translated from English transcripts independently by many
volunteers, which may cause some differences in details
of the translation in the various target languages. For ex-
ample in {English, Croatian, Serbian}, Croatian and Ser-
bian translations may not be completely parallel. Table 5
shows such an example where the Serbian translation does
not have a phrase corresponding to “let me.” This kind of
non-parallelism may be resolved by overriding such transla-
tions with pseudo-translations with “fill-in and replace” and
“fill-in and add”. Here, the Serbian pseudo-translation in-
cludes the corresponding phrase “Dozvolite mi” and can be
used to compensate for the missing information. This would
be one possible reason of the improvements by “fill-up and
replace” or “fill-up and add”.

6. Conclusions

In this paper, we examined data augmentation of incom-
plete multilingual corpora in multi-source NMT. We pro-
posed three types of augmentation; fill-in, fill-in and replace,
fill-in and add. Our proposed methods proved better than
baseline system using the corpus where missing part was
filled up with “〈NULL〉”, although results depended on the
language pair. One limitation in the current experiments with
a set of three languages was that missing parts in the test sets
could not be filled in. This can be resolved if we use more
languages, and we will investigate this in future work.
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Table 2: Main results in BLEU for English-Croatian/Serbian (en-hr/sr), English-Slovak/Czech (en-sk/cs), and English-
Vietnamese/Indonesian (en-vi/id).

baseline method proposed method

Pair Trg
one-to-one
(En-to-Trg)

multi-encoder NMT
(fill up with symbol)

multi-encoder NMT
(back translation) fill-in fill-in and

replace
fill-in

and add

en-hr/sr hr 20.21 28.18 27.57 29.17 29.37 29.40
sr 16.42 23.85 22.73 24.41 24.96 24.15

en-sk/cs sk 13.79 20.27 19.83 20.26 20.43 20.59
cs 14.72 19.88 19.54 20.78 20.90 20.61

en-vi/id vi 24.60 25.70 26.66 26.73 26.48 26.32
id 24.89 26.89 26.34 26.40 25.73 26.21

Table 3: The difference of three types of augmen-
tation in BLEU for English-Croatian/Serbian (en-
hr/sr), English-Slovak/Czech (en-sk/cs), and English-
Vietnamese/Indonesian (en-vi/id). We used one-to-one
model to produce pseudo-translations.

multi-encoder NMT (back-translation)

Pair Trg fill-in fill-in and
replace

fill-in
and add

en-hr/sr hr 27.57 24.05 24.79
sr 22.73 17.77 22.02

en-sk/cs sk 19.83 16.75 18.16
cs 19.54 17.04 18.40

en-vi/id vi 26.66 26.39 26.65
id 26.34 23.90 26.67
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Abstract
We propose a method to transfer knowledge across neural
machine translation (NMT) models by means of a shared dy-
namic vocabulary. Our approach allows to extend an initial
model for a given language pair to cover new languages by
adapting its vocabulary as long as new data become avail-
able (i.e., introducing new vocabulary items if they are not
included in the initial model). The parameter transfer mecha-
nism is evaluated in two scenarios: i) to adapt a trained single
language NMT system to work with a new language pair and
ii) to continuously add new language pairs to grow to a mul-
tilingual NMT system. In both the scenarios our goal is to
improve the translation performance, while minimizing the
training convergence time. Preliminary experiments span-
ning five languages with different training data sizes (i.e., 5k
and 50k parallel sentences) show a significant performance
gain ranging from +3.85 up to +13.63 BLEU in different lan-
guage directions. Moreover, when compared with training an
NMT model from scratch, our transfer-learning approach al-
lows us to reach higher performance after training up to 4%
of the total training steps.

1. Introduction
Neural Machine Translation (NMT) has shown to sur-
pass phrase based Machine Translation approaches not
only in high-resource language settings, but also with low-
resource [1] and zero-resource translation tasks [2, 3]. Al-
though recent approaches yield promising results, training
models in low-resource settings remains a challenge for MT
research [4]. [2] have shown that a multilingual NMT (M-
NMT) model that utilizes a concatenation of data covering
multiple language pairs (including high-resourced ones) can
result in better performance in the low-resource translation
task. Alternatively, [5] proposed a transfer-learning approach
from an NMT “parent-model” trained on a high-resource lan-
guage to initialize a “child-model” in a low-resource setting
showing consistent translation improvements on the latter
task.

Though effective, training models on a concatenation of
data covering multiple language pairs or initializing them by

(*) Work conducted while this author was at FBK.

transferring knowledge from a parent model does not con-
sider the dynamic nature of new language vocabularies. In
relation to how and when model vocabularies are built, there
can be two distinct scenarios. In the first one, all the training
data for all the language pairs are available since the begin-
ning. In this case, either separate or joint sub-word segmen-
tation models can be applied on the training material to build
vocabularies that represent all the data [6, 7]. In the second
scenario, training data covering different language directions
are not available at the same time (most real-world MT train-
ing scenarios fall in this category, in which new data or new
needs in terms of domains or language coverage emerge over
time). In such cases, either: i) new MT models are trained
from scratch with new vocabularies built from the incoming
training data, or ii) the word segmentation rules of a prior
(parent) model are applied on the new data to continue the
training as a fine-tuning task. In all the scenarios, accu-
rate word segmentation is crucial to avoid out-of-vocabulary
(OOV) tokens. However, different strategies for the different
training conditions can result in longer training time or per-
formance degradations. More specifically, limiting the target
task with the initial model vocabulary will result in: i) a word
segmentation that is unfavorable for the new language direc-
tions and ii) a fixed vocabulary/model dimension despite the
varying language and training dataset size.

NMT models are not only data-demanding, but also re-
quire considerable time to be trained, optimized, and put into
use. In particular real-word scenarios, strict time constraints
prevent the possibility to deploy and use NMT technology
(consider, for instance, emergency situations that require to
promptly enable communication across languages [8]). On
top of this, when the available training corpora are limited
in size, delivering usable NMT systems (i.e., systems that
can be used with the requirement of not making severe errors
[9]) becomes prohibitive. In summary: i) on the data side,
acquiring new training material for x undefined languages is
costly and not always possible, and ii) on the model side,
building an NMT system from scratch when new data be-
come available raises efficiency and performance issues that
are particularly relevant in low-resource scenarios.

We address these issues by introducing a method to trans-
fer knowledge across languages by means of a dynamic vo-

54

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018



cabulary. Starting from an initial model, our method allows
to build new NMT models, either in a single or multiple
language translation directions, by dynamically updating the
initial vocabulary to new incoming data. For instance, given
a trained German-English NMT system (L1), the learned pa-
rameters can be transferred across models, while adopting
new language vocabularies. In our experimental setting we
test two transfer approaches:

• progAdapt: train a chain of consecutive M-NMT
models by transferring the parameters of an initial
model for L1 to new language pairs L2 . . .LN . In this
scenario, the goal is to maximize performance on the
new language pairs.

• progGrow: progressively introduce new language
pairs to the initial model L1 to create a growing M-
NMT model covering N translation directions. In this
scenario, the goal is to maximize performance on all
the language pairs.

Our experiments are carried out with Italian−English,
Romanian−English, and Dutch−English training data sets of
different size, ranging from low-resource (50k) to extremely
low-resource (5k) conditions.

As such, in a rather different way from previous work [5],
we show our transfer-learning approach in a multilingual
NMT model with dynamic vocabulary both in the source and
target directions. Our contributions are as follows:

• we develop a transfer-learning technique for NMT
based on a dynamic vocabulary, which adapts the pa-
rameters learned on a parent task (language direction)
to cover new target tasks;

• through experiments in different scenarios, we show
that our approach improves knowledge transfer across
NMT models for different languages, particularly in
low-resource conditions;

• we show that, with our transfer learning approach,
it is possible to train a faster converging model that
achieves better performance than a system trained
from scratch.

2. Related work
2.1. Transfer Learning

Recent efforts [10, 11] in natural language processing
(NLP) research have shown promising results when transfer-
learning techniques are applied to leverage existing models to
cope with the scarcity of training data in specific domains or
language settings. The advancements in NLP came following
a much larger impact of transfer-learning in computer vision
tasks, such as classification and segmentation, either using
features of ImageNet [12] or by fine-tuning the last layers
of a deep neural network [13]. Specific to NLP, pre-trained
word embeddings [14] used as input to the first layer of the

network have become a common practice. In a broader sense,
pre-trained models have been successfully exploited for sev-
eral NLP tasks. [15] used an MT model as a pre-training step
to further contextualize word vectors for downstream tasks
like sentiment analysis, question classification, textual entail-
ment, and question answering. In a similar way, a language
model is utilized for pre-training in sequence labeling tasks
[16], question answering, textual entailment, and sentiment
analysis [17].

Close to our approach, [5] explored techniques for
transfer-learning across two NMT models. First, a “par-
ent” model is trained with a large amount of available data.
Then the encoder-decoder components are transferred to ini-
tialize the parameters of a low-resourced “child” model. In
this parent-child setting, the decoder parameters of the child
model are fixed at the time of fine-tuning. Later, in [18], the
parent-child approach has been extended to analyze the effect
of using related languages on the source side.

Although this work shares a related approach with [5], we
diverge by our hypothesis not to selectively update only the
encoder, allowing all the parameters to be updated as a ben-
eficial strategy in our setting. Our strategy is based on both
the source→target and target→source translation directions
that we consider as transferable. Moreover, our transfer-
learning approach relies on a dynamic vocabulary that en-
forces changes in the trainable parameters of the network in
contrast to fixing them1.

2.2. Multilingual NMT

In a one-to-many multilingual translation scenario, [19] pro-
posed a multi-task learning approach that utilizes a single
encoder for the source language and separate attention mech-
anisms and decoders for each target language. [20] used
distinct encoder and decoder networks for modeling multi-
ple language pairs in a many-to-many setting. Later, [21]
introduced a way to share the attention mechanism across
multiple languages. Aimed at avoiding translation ambigui-
ties on the decoder side, a many-to-one character level NMT
setup [22] and a two/multi-source NMT [23] were also pro-
posed. Inspired by [24], who automatically annotated the
source side with artificial flags to manage the politeness level
of the output, other works focused on controlling the gram-
matical voice [25], the text domain [26, 27], and enforcing
gender agreement [28]. Simplified yet efficient multilingual
NMT approaches have been proposed by [2] and [3]. The ap-
proach in [3] applies a language-specific code to words from
different languages in a mixed-language vocabulary. The ap-
proach in [2], by prepending a language flag to the input
string, greatly simplified multilingual NMT eliminating the
need of having separate encoder/decoder networks and at-
tention mechanism for each new language pair. In this work
we follow a similar strategy by incorporating an artificial lan-
guage flag.

1In future work, we plan to further study which parameters are more
beneficial if transferred and which part of the network to selectively update.
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3. Transfer Learning in M-NMT
In this work, we cast transfer-learning in a multilingual neu-
ral machine translation (M-NMT) task as the problem of
dynamically changing/updating the vocabulary of a trained
NMT system. In particular, transfer-learning across models
is assumed to: i) include a strategy to add new language-
specific items to an existing NMT vocabulary, and ii) be able
to manage a number of new translation directions in different
transfer rounds, either by covering them one at a time (i.e.,
in a chain where new languages are covered stepwise) or si-
multaneously (i.e., pursuing all directions at each step). Our
investigation focuses on two aspects. The first one is how the
parameters of an existing model can be transferred to a target
one for a new language pair. The second aspect is how to
limit the impact of parameters’ transfer on the performance
of the initial model as long as new language directions are
added. For convenience, we refer to our approach as TL-DV
(Transfer-Learning using Dynamic Vocabulary).

As shown in Figure 1, our transfer-learning approach is
evaluated in two conditions:

• progAdapt, in which progressive updates are made
on the assumption that new target NMT task data be-
come available for one language direction at a time
(i.e., new language directions are covered sequen-
tially). In this condition, our goal is to maximize per-
formance on the new target tasks by taking advantage
of parameters learned in their parent task;

• progGrow, in which progressive updates are made
on the same assumption of receiving new target task
data as in progAdapt, but with the additional goal of
preserving the performance of the previous language
directions.

We discuss these two scenarios below in §3.2 and §3.3.

3.1. Dynamic Vocabulary

In the defined scenarios, we update the vocabulary Vp of the
previous model with the current language direction vocabu-
lary Vc. The approach simply keeps the intersection (same
entries) between Vp and Vc, whereas replacing Vp entries
with Vc if the entries of the former vocabulary do not exist
in the latter. At training time, these new entries are randomly
initialized, while the intersecting items maintain the embed-
dings of the former model. The alternative approach to dy-
namic vocabulary in a continuous model training is to use
the initial model vocabulary Vp, which we refer to as static-
vocabulary.

3.2. Progressive Adaptation to New Languages

In this scenario, starting from the init model (L1), we per-
form progressive adaptation by initializing the training of a
model at each step (Ln) with the previous model (Ln−1). At
time of reloading the model from Ln−1, a TL-DV update is

performed as described in §3. In this approach, the dataset of
the initial model is not included at the current training stage.
This allows the adaptation to the new language without un-
necessary word segmentation that may arise by applying the
initial model’s segmentation rules. As shown in Figure 1
(left), the adaptation on any of the Ln stages is language in-
dependent, though subject to the available training dataset.
We refer to the application of this approach in the experi-
mental settings and discussion as progAdapt.

3.3. Progressive Growth of Translation Directions

In this scenario, an initial model L1 is simultaneously
adapted to an incremental number of translation directions,
under the constraint that the level of performance on L1 has
to be maintained. For a simplified experimental setup, we
will incorporate a single language pair (source→target) at a
time, when adapting to Ln from Ln−1 (see Figure 1 (right)).
We refer to the application of this approach in the experimen-
tal settings and discussion as progGrow.

4. Experimental Setting
4.1. Dataset and Preprocessing

Our experimental setting includes the init model language
pair (German-English) and three additional language pairs
(Italian-English, Romanian-English, and Dutch-English) for
testing the proposed approaches. We use publicly available
datasets from the WIT3 TED corpus [29]. Table 1 shows the
summary of the training, dev, and test sets. To simulate an
extremely low-resource (MELR) and low-resource (MLR)
model settings, 5K and 50K sentences are sampled from the
last three language pairs’ training data.

At the preprocessing step, we first tokenize the raw data
and remove sentences longer than 70 tokens. As in [2], we
prepend a “language flag” on the source side of the corpus for
all multilingual models. For instance, if a German source is
paired with an English target, we append <2ENG> at the be-
ginning of source segments. Next, a shared byte pair encod-
ing (BPE) model [6] is trained using the union of the source
and target sides of each language pair. Following [30], the
number of BPE segmentation rules is set to 8, 500 for the
data size used in our experimental setting. At different lev-
els of training (Li), a BPE model with respect to the lan-
guage pairs is then used to segment the training, dev, and test
data into sub-word units. While, the vocabulary size of the
init is fixed, the vocabulary varies in the consecutive train-
ing stages depending on the overlap of sub-word units and
lexical similarity between two language pairs.

4.2. Experimental Settings

All systems are trained using the Transformer [31] model im-
plementation of the OpenNMT-tf sequence modeling frame-
work2 [32]. At training time, to alternate between dynamic

2https://github.com/OpenNMT/OpenNMT-tf
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Figure 1: Transfer-Learning; (left) from an initial NMT model to a new language pair, model is applied after inserting the new
vocabulary entries, for instance, the initial model Ln−1 parameters are transfered to Ln with the updated embedding space (i.e.,
keeping V 1

p , V 2
p as overlapping entries, while replacing the non-overlapping V i

p with V j
c new language vocabularies), and (right)

from an initial model Ln−1 to Ln, but incorporating both the previous and new language pair data and vocabulary entries.

Table 1: Languages and dataset sizes for train, dev, and test
sets of the init model for De-En direction and other pairs
assumed to be received progressively (It-En, Ro-En, Nl-En).

Language Train Dev Test Received
German(De)-En 200k 1497 1138 init
Italian(It)-En 5k/50k 1501 1147 L2

Romanian(Ro)-En 5k/50k 1633 1129 L3

Dutch(Nl)-En 5k/50k 1726 1181 L4

and static vocabulary, we utilized an updated version of the
script within the same framework. For all trainings, we use
LazyAdam, a variant of the Adam optimizer [33], with an
initial learning rate constant of 2 and a dropout [34, 35]
of 0.3. The learning rate is increased linearly in the early
stages (warmup training steps=16, 000), and afterwards it is
decreased with an inverse square root of the training step.

To train our models using Transformer, we employ a uni-
form setting with 512 hidden units and embedding dimen-
sion, and 6 layers of self-attention encoder-decoder network.
The training batch size is of 4096 sub-word tokens. At in-
ference time, we use a beam size of 4 and a batch size of
32. Following [31] and for a fair comparison, all baseline
experiments are run for 100k training steps, i.e., all models
are observed to converge within these steps. The consecutive
experiments converge in variable training steps. However, to
make sure a convergence point is reached, all restarted ex-
periments on Li are run for additional 50K steps. All models
are trained on a GeForce-GTX-1080 machine with a sin-
gle GPU. Systems are compared in terms of BLEU [36] using
the multi-bleu.perl implementation3, on the single references
of the official IWSLT test sets.

4.3. Baseline Models

To evaluate and compare with our approach, we train single
language pair baseline models corresponding to the newly in-

3A script from the Moses SMT toolkithttp://www.statmt.org/moses

troduced language pairs at each Li training stage. The base-
line models, referred to as Bi-NMT, are separately trained
from scratch in a bi-directional setting (i.e., source ↔ target).
In addition, we report scores from a multilinugal (M-NMT)
model trained with the concatenation of all available data in
each training stage. The alternative baseline are built by
fine-tuning the init model. These models use the vocab-
ulary (word segmentation rules) of the init model, avoid-
ing the proposed dynamic vocabulary. This fine-tuning ap-
proach is prevalent in continued model trainings, for adapt-
ing NMT models [37, 38] or improving zero-shot and low-
resource translation tasks [39, 40, 41]. For the alternative
baseline where we fine-tune init with its static-vocabulary,
we observed that results were mostly analogous to Bi-NMT
models. Hence, we avoided this comparison in this work and
relied on the former baselines.

5. Results and Discussion

Experiments are performed using the progAdapt (see
§3.2) and progGrow (§3.3) approaches. The experimen-
tal results with the associated discussion are presented in
Table 2 for models characterized by relatively low-resource
data (MLR), and in Table 3 for an extremely low-resource
condition (MELR). In both dataset conditions, the perfor-
mance of the proposed approaches is compared with the
baseline systems (Bi-NMT and M-NMT, see §4.3).

The init model which is trained with a data size 4X
larger than MLR and 40X the size of MELR, achieves BLEU
scores of 26.74 and 23.30, respectively, for the De-En and
En-De directions. In Table 2 and 3, the progAdapt is re-
ported for each training stage (i.e., L2, L3, and L4), whereas
the progGrow is reported for the final stage L4. Moreover,
Table 4 analyzes the effect of language relatedness and train-
ing stage reordering in our TL-DV approach. Bold high-
lighted BLEU scores show the best performing approach,
while the ↑↓ arrows indicate statistically significant differ-
ences of the hypothesis against the better performing base-
line (M-NMT) using bootstrap resampling (p < 0.05) [42].
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Table 2: MLR models performance i) at L1 for the init
De-En direction and baseline (Bi-NMT) It-En, Ro-En, and
Nl-En directions, ii) at L2/3/4 for progAdapt, and iii) at
L4 for the progGrow approach.

Dir De-En It-En Ro-En Nl-En

Init/Bi-NMT
> 26.74 25.21 10.80 21.75
< 23.30 22.39 12.94 19.75

M-NMT
> 24.14 26.42 22.17 24.00
< 21.80 23.57 17.35 21.25

ProgAdapt
> - ↑30.08 ↑24.43 ↑26.36
< - ↑26.24 ↑20.31 ↑25.52

ProgGrow > 26.22 ↑29.61 23.23 24.78

5.1. Low-Resource Setting

For each language pair (i.e., It-En, Ro-En, and Nl-En), the re-
sults of the baseline models Bi-NMT trained using the avail-
able 50K parallel data (MLR setting) are presented in the
first two rows of Table 2. The progAdapt results are re-
ported from three consecutive adaptations to new language
directions. These include the init to It-En, followed by
the adaptation to Ro-En, and then to Nl-En. Compared to
the corresponding Bi-NMT and M-NMT models, all of the
three progressive adaptations using the dynamic vocabulary
technique achieved a higher performance gain.

If we look at the specific level of adaption (Li) against
the Bi-NMT, we observe that the It-En direction showed a
+4.87 and +3.85 gain for the En and It target, respectively.
When we take this model and continue the adaptation to Ro-
En and Nl-En, we see a similar trend where the highest gain
is observed on L3 for the Ro-En direction with +13.63 and
+7.37 points. These significant improvements over the base-
line models tell us that transfer-learning using dynamic vo-
cabulary in a multilingual setting is a viable direction. Its ca-
pability to quickly tune the representation space of the init
model to deliver improved results is an indication of the im-
portance of using different word representations for each lan-
guage pair4.

In case of the progGrow, we observed a similar im-
provement trend as in the progAdapt approach. The re-
sults are reported from the final stage (L4) of the model
growth, but improvements are consistent throughout the L2

and L3 stages. The M-NMT outperformed the Bi-NMT mod-
els except for De-En pair. However, compared to the multi-
lingual model as an alternative method for achieving cross-
lingual transfer-learning, our approach shows improvements
in the consecutive training stages. Overall, our observation
is that the suggested progGrow model can accommodate
new translation directions when the data are received. Most

4We reserve the adaptation from the init model directly to all the three
new language pairs and the comparison with the current setting for future
work.

Table 3: MELR models performance i) at L1 for the init
De-En direction and baseline (Bi-NMT) It-En, Ro-En, and
Nl-En directions, ii) at L2/3/4 for progAdapt, and iii) at
L4 for the progGrow approach.

Dir De-En It-En Ro-En Nl-En

Init/Bi-NMT
> 26.74 7.64 4.56 5.69
< 23.30 5.25 3.86 5.14

M-NMT
> 24.96 16.26 12.67 15.59
< 21.67 10.38 8.67 12.72

ProgAdapt
> - ↓15.16 ↓11.03 ↓11.52
< - ↑14.40 ↑11.10 13.57

ProgGrow > 25.61 ↓15.02 ↓11.20 ↓13.56

importantly, improvements are observed for these newly in-
troduced languages without altering the performance of the
init model in the De-En direction.

Specific to each language direction, It-En shows a
comparable performance with the progAdapt approach,
whereas in case of Ro-En and Nl-En a small degradation
ranging from 0.47 (De-En) to 1.58 (Nl-En) is observed. The
loss in performance is likely due to the increased ambiguities
in the encoder side of the progGrow model, where at both
training and inference time there does not exist a disambigua-
tion mechanism between languages except the prepended
language flag. This observation, which sheds a light on our
initial expectation of more data aggregation benefiting the
model performance, requires further investigation.

5.2. Extremely Low-Resource Setting

In a similar way with what we observed in the MLR exper-
iments, the baseline models in the extremely low-resource
setting demonstrate poor performance. Looking at our ap-
proaches, we observe a relatively higher gain at the first stage
of progAdapt and progGrow. For instance, for the It-
En pair there is a +7.52 improvement compared to the +4.87
in the MLR models (see Table 2) over the Bi-NMT model.
In the subsequent additional language directions (i.e., Ro-En
and Nl-En), we also observe a similar trend. However, in
comparison with the M-NMT, both of our approach perform
poorly when translating to the En target. The main reason
for this could be the aggregation of all the available data for
a single run in the M-NMT model, while our approaches ex-
ploit data when it becomes available in a continuous training.
Alternatively the distance between each language pair could
play a significant role when we adapt in an extremely sparse
data.
prog-Adapt/Grow with Related Languages. When re-
lated language pairs are consecutively added (Ln−1 and
Ln) at each training stages, our TL-DV approach showed
the best performance. For instance, for the Nl-En experi-
ments, we changed the sequence of the added language pair
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Table 4: MLR and MELR models performance at L1 for
progAdapt and progGrow approaches in a closely re-
lated De-En (init) and Nl-En language pairs setting.

MLR MELR

Dir De-En Nl-En De-En Nl-En

ProgAdapt
> - ↑27.23 16.21
< - ↑25.51 15.86

ProgGrow > 26.62 ↑26.41 26.52 ↑15.52

moving from a random order to a sequence based on the
similarity to the init model. Table 4 shows the results
from progAdapt and progGrow, when the Nl-En pair
is used at the L1 training stage. The MLR results con-
firm the trend observed in Table 2, however, with a rel-
atively better performance when translating in to English.
Most importantly, the MELR results show a consistent and
larger gain of +4.69 (Nl-En) and +2.29 (En-Nl) with the
progAdapt, and +1.96 (Nl-En) with progGrow com-
pared to the corresponding results in Table 3. Thus, we em-
phasize on the degree of language similarity as a direct influ-
encing factor when incorporating a new language pair both
in progAdapt and progGrow approaches. .
Prog-Adapt/Grow with Faster Convergence. The other
main advantage of our TL-DV approach comes from the time
a model takes to restart from the init model and reach a
convergence point with better performance. In all experi-
ments with our TL-DV approach a converged model is found
within 10K steps for MELR and 20K for MLR training set-
tings. Compared to ≈100K steps needed by a model trained
from scratch to reach good performance, our approach takes
only 4% to 20% of training steps with significantly higher
performance. For instance, taking into consideration the
MELR models, Figure 2 illustrates the steps required for the
baseline systems to converge (Table 3), in comparison with
our approach where progGrow shows to converge slightly
faster than progAdapt. However, with the relatively larger
data of the MLR models, the progAdapt approach proves
to converge much faster than progGrow, for the reason that
the newly introduced vocabulary and training dataset sizes
are smaller compared to the concatenation of the init and
Li data.

We further analyzed the influence of shared vocabularies
between models Li and Li+1 on the performance of TL-DV.
For this discussion, we took the progAdapt MLR model
from all stages. Figure 3 summarizes the improvement dif-
ferences from consecutive models in relation to the percent-
age of shared vocabularies. For instance, init and the L2

(It-En) model vocabularies have a 47% overlap, whereas L3

and L4 share 53% and 51% with the previous model. The in-
teresting aspect of the shared vocabulary comes from the in-
crease in model performance with a higher fraction of shared
vocabulary entires. Thus, a larger number of shared parame-

Figure 2: Model training steps number comparison for the
three different language pairs between the baseline (right-
most) and the proposed approaches in the MELR setting.

Figure 3: The difference in performance between the base-
line and progAdapt models (Tgt→Src and Src→Tgt direc-
tions) in relation with the shared vocabulary between model
Li and new language pair model Li+1.

ters between two consecutive models allows for a better gain
in performance of the latter.

The results achieved by the transfer-learning with dy-
namic vocabulary approach in two different training size con-
ditions show that: i) adapting a trained NMT model to a new
language pair improves performance on the target task signif-
icantly, and ii) it is possible to train a model faster to achieve
better performance. Overall, the capability of injecting new
vocabularies for new language pairs in the initial model is a
crucial aspect for efficient and fast adaptation steps.

6. Conclusions
In this work, we proposed a transfer-learning approach
within a multilingual NMT. Experimental results show that
our dynamic vocabulary based transfer-learning improves
model performance in a significant way of up to 9.15 in
an extremely low-resource and up to 13.0 BLEU in a low-
resource setting over a bilingual baseline model.

In future work, we will focus on finding the optimal way
of transferring model parameters. Moreover, we plan to test
our approach for various languages and language varieties.
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Abstract
In this paper we present an analysis of the two most promi-
nent methodologies used for the human evaluation of MT
quality, namely evaluation based on Post-Editing (PE) and
evaluation based on Direct Assessment (DA). To this pur-
pose, we exploit a publicly available large dataset containing
both types of evaluations. We first focus on PE and investi-
gate how sensitive TER-based evaluation is to the type and
number of references used. Then, we carry out a compara-
tive analysis of PE and DA to investigate the extent to which
the evaluation results obtained by methodologies addressing
different human perspectives are similar. This comparison
sheds light not only on PE but also on the so-called reference
bias related to monolingual DA. Also, we analyze if and how
the two methodologies can complement each other’s weak-
nesses.

1. Introduction
The evaluation of machine translation (MT) is of crucial im-
portance and has a long research history. Both human and
automatic evaluation have been explored extensively within
the MT community, in the effort to find more and more suit-
able, efficient and reliable methods and metrics. Automatic
metrics play a central role in the progress of the field and the
improvement of MT quality over time. However, they rep-
resent a proxy for human evaluation which – despite being
costly and time-consuming – is to be considered primary.

Among the various human evaluation methods that have
been devised and tested along the years, currently two ap-
proaches have become well-established standards in the field,
namely evaluation based on Post-Editing (PE) and evaluation
based on Direct Assessment (DA).

In the PE-based evaluation, the MT outputs are post-
edited, i.e. manually corrected, according to the source sen-
tence (bilingual PE) or to an existing reference translation

(2) Work conducted while this author was at FBK.

(monolingual PE). The original MT outputs are then eval-
uated against their post-edited versions through TER-based
automatic metrics [1]. Relying on the post-edit instead of an
independently created reference translation ensures that only
true errors in the MT output are counted, and not those differ-
ences due to linguistic variation, which are accounted for by
post-editors. PE has become the standard evaluation metric
for the yearly evaluation campaign of the International Work-
shop of Spoken Language Translation since 2013 (IWSLT-
2013) and is described in detail in [2].

The DA-based evaluation [3] consists of collecting hu-
man assessments of translation quality for single MT sys-
tems. Assessors see a candidate translation and a correspond-
ing translation hint (e.g. the source text, a reference transla-
tion, or multimodal content) and are asked to assign a quality
score from 0 to 100. DA has become the standard evalua-
tion metric for the yearly Conference on Machine Transla-
tion (WMT) in 2017 [4]. Following the findings of WMT17,
the main focus for DA is on semantic transfer (which corre-
sponds to adequacy) while syntactic transfer (or fluency) has
turned out to be less relevant. Traditionally, in the DA task
MT quality is assessed according to a reference translation,
without access to the source text. This is called reference-
based DA (DA-ref ). A problematic issue with DA-ref is
its inherent dependence on reference translations, which can
lead to reference bias, both in the form of giving an implicit
boost to candidate translations which are very similar (e.g., in
syntax or lexical choice) to the corresponding reference text,
or by penalizing good translations because of translation er-
rors affecting the reference itself. To address the reference
bias, source-based DA (DA-src) can be used, where transla-
tion quality is assessed directly according to the source text.
DA-src has been tested on a large scale for the first time in
the IWSLT 2017 evaluation campaign [5].

DA and PE are different and complementary methodolo-
gies, not only from the point of view of their design but also
concerning their practical usage. First, the two evaluation
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methods address different human perspectives. Indeed, while
DA focuses on the generic assessment of overall translation
quality, PE-based evaluation reflects a real application sce-
nario – the integration of MT in Computer-Assisted Trans-
lation (CAT) tools – and directly measures the utility of a
given MT output to translators. Furthermore, while DA is
based only on human annotators, in PE an automatic compo-
nent (i.e. TER) is applied to quantify the errors of the MT
output. Finally, in terms of data collection DA is less costly
then PE and thus more viable when used within the research
scenario; however PE has the double advantage of (i) produc-
ing a set of additional reference translations, and (ii) being
particularly suitable for performing fine-grained analyses of
the MT systems, since it produces a set of edits pointing to
specific translation errors [6, 7, 8].

Given the importance of human evaluation for MT im-
provement and the specific features of these two most promi-
nent frameworks, we present an empirical analysis of these
different methodologies as a contribution to their better un-
derstanding.

The analysis is conducted on the publicly available Hu-
man Evaluation dataset created as part of the IWSLT 2017
evaluation campaign [5]. The dataset covers two language di-
rections, namely Dutch-to-German and Romanian-to-Italian.
For each direction, it includes DA-src, DA-ref, and PE hu-
man evaluation data for nine different state-of-the art neural
MT systems on the same 603 segments. DA evaluation was
performed by linguists, while professional translators carried
out the bilingual PE task. Besides making our study possi-
ble, the size, variety and high quality of this three-way eval-
uation dataset ensure sound empirical analyses and general-
izable outcomes.

The main investigations presented in the paper are:

• New analyses on PE data. The availability of multiple
post-edits allows us to investigate how sensitive TER-
based evaluation is to the type (external versus post-
edit) and number of references used, both in terms of
reliability and informativeness of the evaluation;

• New comparative analysis of PE and DA. In this em-
pirical comparison we investigate the extent to which
the evaluation results obtained by methodologies ad-
dressing different human perspectives are similar. This
investigation gives us insight not only on PE but also
on the relations between DA-src and DA-ref. Also, we
analyze if and how PE and DA can complement each
other’s weaknesses.

2. Related Work
Human Evaluation has always received a lot of attention in
the field of MT and many methodologies have been devised
and tested in different scenarios. The same holds for the two
methods addressed in this paper.

PE-based evaluation was the focus of various studies [1,
9, 6] and was commonly employed in large-scale evaluation

campaigns, such as IWSLT [2, 10, 11, 12, 5] and the MT
Quality Estimation Task at WMT-2015 [13].

Also research on DA has been very active since its in-
troduction as method for human evaluation of MT [3, 14].
Large-scale evaluations were carried out through DA-ref [4]
and, more recently, also through DA-src [5, 15].

As specifically regards the impact of different numbers
and types of post-edits in PE-based evaluation, a study on
multiple references was presented in [16], but it did not target
PE-based evaluation.

Concerning the issue of reference bias in DA-ref evalu-
ation, it was examined in detail in [17], [18], and [19]. To
this aim, [17] compares directly DA-src and DA-ref but on
a very small dataset, not comparable to the one used in our
investigation.

As regards the comparative analysis of DA and PE, cor-
relation results between DA-ref and HTER for 9 language
directions are presented in [19]. However, the evaluation
data differs in many respects, making results not compara-
ble. First, the dataset used in this paper includes both DA-ref
and DA-src. Furthermore, PE data is made of multiple bilin-
gual post-edits created by professional translators native in
the target language and working in their professional CAT
environment. On the contrary, the post-edits used to calcu-
late HTER in [19] were created through monolingual post-
editing, probably based on the same reference used to collect
DA-ref judgments.

3. Evaluation Data
To perform our investigations on DA and PE we relied on the
Human Evaluation dataset created as part of the IWSLT 2017
evaluation campaign [5]. The resource is publicly available
at the WIT3 website [20], where all IWSLT data and tools
are released by the organizers of the campaign. 1

The dataset is based on TED talks2 and includes 603 sen-
tences (around 10,000 source words), corresponding to the
first half of ten different TED talks. It covers two language
pairs, namely Dutch-German (NlDe) and Romanian-Italian
(RoIt) which – belonging to two distinct families (West-
Germanic and Romance, respectively) – show rather differ-
ent characteristics.

For each language direction, evaluation data were col-
lected for nine different state-of-the-art neural MT systems:
three standard bilingual systems (i.e. a different system is
created for each language direction) and six multilingual sys-
tems (i.e. one single system for multiple language direc-
tions), out of which three in the zero-shot condition (i.e.
tested on language pairs that are not present in the training
data). Furthermore, systems differ also for their architecture,
since some of them implement Recurrent Neural Networks,
while others are based on the Transformer model [21].3

1https://wit3.fbk.eu/show.php?release=2017-
02&page=subjeval&texthead=Evaluation%20Data

2www.ted.com
3All details about the MT systems can be found in [22, 23, 24].
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The MT systems were evaluated on all the 603 dataset
sentences according to PE, source-based DA, and reference-
based DA. Details on human evaluation data are given in the
following.

3.1. Post-Editing data

This evaluation was carried out through bilingual post-
editing: the outputs of the nine MT systems on the 603 test
sentences were assigned to nine professional translators to be
manually corrected directly according to the source sentence.

To ensure the soundness of the evaluation and cope with
translators’ variability, an equal number of outputs from each
MT system was assigned randomly to each translator, in such
a way that each translator had to post-edit all the sentences
in the test set but only once.

The resulting PE data used in this study consists of nine
new reference translations for each sentence of the test set.
Each one of these references represents the targeted refer-
ence of the system output from which it was derived, while
the post-edits of the other systems are available for evalua-
tion as additional references. All details about data prepara-
tion and post-editing can be found in [2, 5].

In addition to the PE data, an external - independently
created - reference was also available, for a total of ten refer-
ences for each of the 603 sentences in the dataset.

3.2. Direct Assessment data

Both DA-src and DA-ref data were collected for all the MT
system outputs on all the 603 test sentences employing bilin-
gual linguists. To ensure the reliability of the human as-
sessments, part of the collected data was used for quality
control. Based on artificially degraded translation output—
which should be scored worse than the corresponding can-
didate translation—it is possible to identify users who ran-
domly assign scores without paying attention to the presented
data and, thus, work unreliably. Only annotations from reli-
able annotators were used to compute the final system eval-
uation. Furthermore, as annotators may have different anno-
tation behaviour, the collected scores (at least two for each
sentence) were standardized into z scores, which capture the
number of standard deviations a score is different from (i.e.
better or worse than) the respective annotator’s mean score.
Then, z scores were averaged at segment and system level to
determine the overall MT system quality as observed by all
annotators.

4. Analysis of PE-based evaluation
As described in Section 1, evaluation via post-editing is
based on TER, which measures the amount of editing that a
human would have to perform to change an automatic trans-
lation so that it exactly matches a given reference translation.
Since TER is an automatic metric that works on exact word
matching, it is unable to distinguish differences between MT
output and reference due to normal linguistic variation from

those due to real MT errors.
For this reason the reference translations used in TER-

based evaluation (as in all automatic evaluations) play a cen-
tral role in determining its reliability and informativeness.

It is widely accepted that the most suitable reference to
evaluate an MT system is its corresponding post-edit (tar-
geted reference), since it is derived from that specific system
and thus should differ from the MT output only with respect
to the parts of it that are incorrect. External references are
at the other hand of the spectrum, since they are manually
generated by translating the source text from scratch, inde-
pendently from any MT system output. A particular case of
reference is the post-edit of an actual system output which
is not the one under evaluation. In this case the reference
represents one of the many possible translation options and
can indeed differ from the evaluated MT output due to lin-
guistic variation. However, being created starting from an
MT output, it is possible that its peculiar features make it
more suitable to MT evaluation. This type of reference is
particularly interesting since it can be easily gathered, being
a natural by-product of professional translation in the CAT
framework. Finally, the usage of multiple references has of-
ten been investigated as a way to address the issue of accept-
able linguistic variation, under the assumption that the more
references the highest the reliability of the evaluation.

In this section we exploited the PE data – i.e. one external
reference and nine post-edits created from the nine evaluated
MT systems – to carry out different analyses aimed at under-
standing if and how TER-based evaluation is sensitive to the
type and number of references used.

Depending on the reference(s) used in the analysis, we
relied on different variants of TER, namely: (i) Human-
targeted TER (HTER), where TER is computed between the
machine translation and its post-edited version (targeted ref-
erence); (ii) Multiple reference TER (mTER), where TER is
computed against the closest reference – i.e. the one which
minimizes the number of edits – among all the available ones.

We empirically analyzed the impact of references in the
evaluation from two different angles: (i) for each evaluated
MT system, we investigated the specific contribution of each
of the nine available post-edits to the mTER score of the sys-
tem; (ii) for each language pair, we calculated how overall
MT system performance (i.e. TER score) varies depending
on the type and number of references used.

Figure 1 shows an example of the distribution of the iden-
tity of systems which originated the post-edits that were cho-
sen as closest reference translation in the computation of
mTER. Four NlDe systems are presented in the figure, among
which three were post-edited (BL.lab1, SD.lab2, ZS.lab3)
and one was not (SD.lab4), and is shown for comparison pur-
poses. The same behaviour of the NlDe systems presented in
the figure was observed also for the other NlDe systems as
well as for the RoIt direction.

As expected, the peak occurs in correspondence of the
post-edit of the system under evaluation. Looking at the cor-
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Figure 1: Frequency distribution of the closest PE selected in the computation of mTER of four NlDe systems. For each
system that originated the PE, in orange the number of sentences for which that PE was the closest translation to the MT under
investigation, in blue the number of sentences where the PE was the closest together with at least another PE.

Figure 2: TERs on single references (green bars) and mTER on increasing number of references (red line).

responding column, we note however that the targeted ref-
erence is the closest to the MT output only for around one-
third of the test set (orange-coloured), while for another third
there is at least one equivalent post-edit from another sys-
tem (blue-coloured). Interestingly enough, for the remaining
third of the test set, the closest reference is a post-edit from
another system.

Looking at the columns of the post-edits originated from
the other 8 MT systems, we see that for a non-negligible
number of test sentences these references represent the clos-
est translation (orange). This is particularly relevant when
confronted to the results of the external reference translation,
which is not shown in the figure since it was never picked as
the closest reference translation. It is also worthwhile to note
that the post-edits of other MT systems created by the same
Lab – which are expected to have similar outputs – are not
chosen as closest references significantly more often than the
post-edits of other Labs’ systems. This suggests that the ad-
vantage of the post-edits of other systems does not rely in the
similarity of the MT systems but more generally in the fact
that the reference translation is derived from an MT output.

From the point of view of the number of references used
in the evaluation, we understand from Figure 1 that a certain
degree of variability is present also in the targeted translation

– since for one-third of the test set it does not ensure the
lowest edit distance with the MT output. We can thus confirm
that – even when a targeted reference is available – mTER
guarantees the highest reliability of the evaluation. Finally,
the rightmost part of Figure 1 presents results for a system
(SD.lab4) for which no post-edit was created. We can see
that the closest references are equally distributed among all
the available references, further confirming the importance
of having multiple references.

The same conclusions can be drawn by analyzing the
overall performances of the MT systems when using different
reference translations. For each language direction, Figure 2
shows the impact that each of the ten references at our dis-
posal has on TER, averaged across systems. The vertical bars
provide the TER score computed using a single reference, be
it one of the external post-edits, the targeted post-edit, or the
external reference; for each system, the PEs are considered in
reverse order with respect to their overall score, that is from
the farthest to the closest to the system output, which invari-
ably is the targeted PE; the external reference is presented as
the last; the red line represents the mTER computed on an
incremental set of references.

The low TER results obtained using a single non-targeted
post-edit are quite interesting. Indeed evaluating a system
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against a post-edit created for another system is more sound
than using an external reference. This is particularly relevant
in a real application scenario where obtaining a post-edit of
a system is easy and inexpensive. On the same line, consid-
ering the mTER cumulative score, it is interesting to see that
the same HTER results obtained with the targeted reference
(trgPE, dark green bar) can be achieved using seven external
post-edits for the NlDe direction and six for the RoIt direc-
tion.

For completeness, Table 1 gives the exact figures of the
most relevant information contained in Figure 2, namely
mTER using all 9 available post-edits, HTER, and TER over
the external reference.

Indeed we can observe a considerable TER reduction
when using all collected post-edits with respect to both the
HTER obtained using the targeted post-edit and the TER
obtained using the independent reference. This reduction
clearly confirms that exploiting all the available reference
translations allows to produce a score which is not only more
reliable but also more informative about the real performance
of the systems.

mTER HTER TER
9 PE refs tgt PE 1 ext ref

NlDe 23.80 29.96 66.10
RoIt 23.64 31.25 61.56

Table 1: %TERs computed on different (set of) references.

5. Comparative analysis of DA-based and
PE-based evaluation

As introduced in Section 1, the DA-based and PE-based eval-
uation tasks focus on different aspects of automatic transla-
tion: general quality for the reader and usefulness for trans-
lator, respectively. To investigate the extent to which PE and
DA lead to similar results, for each evaluated system we cal-
culated the Pearson correlation between PE-based scores and
DA-based scores for each sentence in the test set. The cor-
relation results obtained for each system were then averaged
through the Fisher transformations suggested in [25].

Table 2 presents the average correlation results. Corre-
lations are calculated for both DA-src and DA-ref and for
all the metrics investigated for PE-based evaluation, namely
mTER, HTER and TER.

As expected, correlation is good, that is, in general seg-
ments judged as poor by DA annotators (low DA scores) also
need substantial post-editing (high PE scores) or vice-versa.

Results slightly vary across language directions, but the
same trends can be observed. First, the highest correlation
is found between DA-src and mTER, confirming that these
are the two most highly reliable human evaluation measures.
As regards PE, mTER correlates better than HTER with DA,
showing once again the importance of having multiple refer-
ences. As regards DA, correlation with PE is considerably

Figure 3: ZS.lab3 RoIt system: scatter plot of source-based
DA standardized scores and mTER scores.

higher for DA-src than DA-ref. This indicates that the so-
called reference-bias affects not only automatic metrics but
also DA-based human evaluation. This is further confirmed
by the results obtained for TER, which is calculated on the
same external reference translation used in DA-ref. Although
TER correlation scores are very low, TER correlates much
better with DA-ref than DA-src, showing an opposite be-
haviour with respect to mTER and HTER.

Given the correlation results obtained, we carried out a
further analysis to investigate whether having both evalua-
tions can help improving the evaluation quality, i.e. whether
the two methodologies can complement each other’s weak-
nesses.

Figure 3 shows the scatter plot of the correlation between
mTER and DA-src for one of the investigated RoIt systems
(r=–0.5812). Conflicting evaluations appear in the lower-left
and upper-right quadrants of the scatter plot. The first quad-
rant includes segments which resulted good according to PE
evaluation (low PE scores) but were judged as poor by DA
annotators (low DA scores); the second includes segments
which needed substantial post-editing (high PE scores) but
were judged as good by DA annotators (high DA scores).

Conflicting evaluation cases are particularly relevant
since PE is known to be more informative (see Section 1),
but DA could identify issues that PE-based evaluation can-
not spot. We manually inspected a sample of the sentences
with conflicting evaluations and we found some interesting
patterns. Examples are provided in Table 3.

When PE scores are low (i.e. few edits are needed to
correct the MT output) but the translation is bad according
to DA, typically the sentence contains few but crucial errors,
which make it difficult to understand the meaning of the sen-
tence (see Example 1 in the table). In these cases, the conflict
is not solvable since from the point of view of DA - which is
focused on adequacy - the MT output is rightfully not good,
while from the point of view of the translator who has ac-
cess to the source sentence, the MT output is indeed useful
to speed-up translation.

In the opposite situation, i.e. high PE scores but good
translation according to DA, we have two main causes for
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avg(r)
NlDe RoIt

mTER HTER TER mTER HTER TER

zDA
src -0.5466 -0.4796 -0.1918 -0.5294 -0.4306 -0.2137
ref -0.4491 -0.4100 -0.3579 -0.4524 -0.3882 -0.3570

Table 2: Average (DA,PE) correlations across systems.

mTER DA-src (abs)

1. SRC Nu are flapsuri, balamale, eleroane, actuatoare sau alte suprafee de control, doar o simplă elice.
It has no flaps, no hinges, no ailerons, no actuators, no other control surfaces, just a simple propeller.

MT Non ha fiori, balconi, elenchi, attuatori o altre superfici di controllo, solo una semplice elica. 14.43% 28
It has no flowers, no balconies, no lists, no actuators, no other control surfaces, just a simple propeller.

PE Non ha flaps, cerniere, alettoni, attuatori o altre superfici di controllo, solo una semplice elica.

2. SRC Prietenele mele, feministe convinse, au fost s, ocate.
My [female] friends, committed feminist, were aghast

MT I miei amici, femministe convinti, sono rimasti scioccati. 47.87% 88
My [male] friends, committed feminist, were aghast.

PE Le mie amiche, femministe convinte, sono rimasti scioccate.

Table 3: RoIt language direction. Examples of conflicting DA-PE evaluation.

conflicts. First, we found very short or long sentences which
are indeed good translations but the mTER score was not cor-
rect due to tokenization (and consequently alignment) prob-
lems. These cases highlight the main weakness of PE-based
evaluation, namely the fact that it relies on automatic metrics
to compute the edit distance. The other type of conflict (see
Example 2 in the table) regards those segments that have to
be heavily post-edited for amending errors which do not alter
the overall comprehension, like in chains of morphological
errors. In these cases, the MT errors affect more fluency than
adequacy, to which DA-based assessment is less sensitive.

6. Conclusions
In order to shed light on the properties, strengths and
weaknesses of human evaluation it is crucial to rely on
high quality datasets. The specific characteristics of the
IWSLT-17 Human Evaluation dataset used in this inves-
tigation - size, variety and high quality of the three-way
human evaluation - ensured sound empirical analyses and
generalizable outcomes. The main findings of this paper are
summarized in the following.

Analysis on PE evaluation data:

• the targeted reference is the closest to the MT output
only for one-third of the test sentences. Thus, mTER
guarantees the highest reliability of the evaluation over
HTER;

• evaluating a system against a post-edit created for an-
other system is more sound than using an external ref-
erence, independently from the similarity of the two
MT systems;

• the same results obtained with the targeted reference

(HTER) can be achieved using six/seven external post-
edits (mTER), not including the targeted reference.

Comparative analysis of DA and PE:

• the highest correlation is found between DA-src and
mTER, confirming that these are the two most highly
reliable human evaluation measures;

• correlation with PE is considerably stronger for DA-
src than DA-ref. This indicates that the so-called
reference-bias affects not only automatic metrics but
also DA-based human evaluation;

• conflicting evaluations between DA-src and mTER ex-
ist. In some cases DA-src can help mitigate the weak-
ness of PE which depends on its automatic component.
In other cases conflicts are caused by inherent differ-
ences due to the fact that the two evaluation methods
address different human perspectives.

To conclude, we are planning to extend our research on
both the analyses presented in this paper. First, we will fur-
ther verify and generalize the results obtained on PE data by
carrying out the analyses on other publicly available IWSLT
datasets, which include multiple post-edits for other lan-
guage directions such as English-German, English-French,
and Vietnamese-English. Second, we will compare more
deeply how DA-ref and DA-src behave on the same data.
Finally, we will perform the manual analysis also on NlDe
data.
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Abstract

This paper describes the USTC-NEL (short for ”National En-
gineering Laboratory for Speech and Language Information
Processing University of science and technology of china”)
system to the speech translation task of the IWSLT Eval-
uation 2018. The system is a conventional pipeline sys-
tem which contains 3 modules: speech recognition, post-
processing and machine translation. We train a group of
hybrid-HMM models for our speech recognition, and for ma-
chine translation we train transformer based neural machine
translation models with speech recognition output style text
as input. Experiments conducted on the IWSLT 2018 task in-
dicate that, compared to baseline system from KIT, our sys-
tem achieved 14.9 BLEU improvement.

1. Introduction
Conventional speech translation systems consist of three
components: source-language automatic speech recognition
(ASR), post-processing over ASR outputs, and source-to-
target text translation. This pipeline system suffers from er-
ror accumulation, which means speech recognition and trans-
lation models trained separately may perform well individu-
ally, but do not work well together because their error surface
do not compose well [1].

In the most recent years, end-to-end speech translation
based on encoder-decoder with attention mechanisms has
been very promising for reducing accumulated errors [2, 1,
3]. However, parallel speech data is much smaller than those
available to train text-based machine translation (MT) sys-
tems, particularly neural systems that needs to learn a rela-
tively large parameters. As a result, an end-to-end speech
translation system can often outperform pipeline systems
with same training data, but is hard to beat pipeline system
with dozens of training data [1].

In addition, to translate very long speech (e.g. translate
a full talk), an end-to-end system must rely on voice activity
detection (VAD) method to split raw audio into sentence-like
fragments, in which mis-segmented sentence fragments are
very likely to cause serious translation errors. Therefore, for
pipeline systems, sentence re-segmentation based on ASR

results may be done in post-processing step, which can im-
prove performance significantly [4].

To reduce the error accumulation of pipeline systems, we
introduce a data augmentation based solution to train trans-
lation model with ASR results as source directly, instead of
normalize ASR results (e.g. insert punctuations, normaliza-
tion for case, numerals, etc.) in post-processing. Text nor-
malization cannot bring any new information, it just pro-
duces texts that translation system likes, and this may lead
to additional errors. In our experiments, the data augmenta-
tion based solution performs significantly better than pipeline
system with text normalization and end-to-end speech trans-
lation system.

This paper is organized as follows. We first describe the
processing for speech and text training data in Section 2, fol-
lowing is our full system and training details. Our experi-
ments are presented in Section 4.

2. Data Processing
We conduct experiments on IWSLT speech translation
task [5] from English to German. All experiments were per-
formed under requirements of IWSLT 2018 evaluation cam-
paign speech translation task. The training data for speech
recognition and translation after filtering are listed in Table 1
and Table 2.

Table 1: speech training data.

Corpus # of seg. Speech hours
TED LIUM2 [6] 92976 207h

Speech Translation 171121 272h

2.1. speech recognition training data

The speech data contains TED LIUM2 [6] and speech trans-
lation data by IWSLT evaluation campaign. In TED LIUM2,
only raw wave files and manual transcriptions (without punc-
tuation) were offered. And in speech translation data, raw
wave files, English transcriptions and the corresponding Ger-
man translations were offered, but some transcriptions is not
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Table 2: text training data.

Corpus raw filtered
commoncrawl 2.39M 1.80M

rapid 1.32M 1.00M
europal 1.92M 1.81M

commentary 0.284M 0.233M
paracrawl 36.35M 12.35M

opensubtitles 22.51M 14.24M
WIT3(in domain) 0.209M 0.207M

match to there corresponding audio. Besides this, about 166
hours of audio in speech translation data were not labeled,
we regard them as unsupervised data.

To utilize those data, we firstly train initial acoustic
model based on TED LIUM2. Using this model, we do force
alignment on IWSLT speech translation data, and discard ut-
terances with significantly abnormal scores. After this pro-
cess, the supervised data size of IWSLT has been reduced
to 246 hours from 272 hours. Meanwhile, the unsupervised
data is recognized by our initial model and filtered based on
ASR confidence to expand the training set.

To further increase the amount of data in the training set,
we perform data augmentation by noise and speed pertur-
bations. For each speech signal, a noise version is created
initially. Speed perturbation is then performed on the raw
signals with speed factors 0.8 and 1.2. Eventually, up to
(207+246+166)*4 hours of data may be used.

2.2. speech translation training data

The speech translation training data is the same as the speech
recognition training data. The target references for LIUM2
and unsupervised data are generated by our best text machine
translation system.

2.3. text translation training data

The text translation training data contains parallel data and
monolingual training data. As for parallel data, we use all
of the allowed training data for Speech Translation Task
which includes TED corpus, data provided by WMT 2018
and OpenSubtitles2018 [7]. The data is pre-processed before
training and translation. Sentences longer than 100 words
and duplicated sentence pairs are removed. Also, numbers
are normalized in order to match the ASR outputs. NMT
systems are more vulnerable to noisy training data, rare oc-
currences in the data, and the training data quality in general.
So we measure the cross-lingual similarities between source
and target sentences, and then reject sentences with similarity
below a specified threshold. After filtering, we can get rel-
evant and high quality data. The training data after filtering
are listed in Table 2.

As for monolingual training data provided by WMT
2018, we clean the noisy data for English and German, and

then we use the supervised convolutional neural network
method [8] to select monolingual training data that are close
to the TED domain. After this processes, we select 91M
monolingual English data and 43M mono-lingual German
data for language model training.

3. System Description
3.1. speech recognition

The primary system of our speech recognition is a hybrid-
HMM system. The acoustic model contains multiple deep
neural networks based on CNN and LSTM structure. State
level posterior fusion technique is used for the final ASR re-
sults. The details of model structure and training criterion
are as following:

1. DenseNet [9]: DenseNet with 13 dense connection
blocks and 3 max-pooling steps with stride 2 on both
time and frequency domain, trained with cross-entropy
(CE) and sequence-discriminative training (SDT) cri-
terion [10].

2. BiLSTM [11]: 3 layers BiLSTM network trained with
CE and SDT criterion.

3. CLDNN [12]: CNN-BiLSTM-DNN structure trained
with CE and SDT criterion.

The language models are trained on English monolin-
gual data described in Section 2.3. The first-pass decoding
is performed with the HMM and 3-gram LM. A 4-gram LM
is used for second-pass decoding and followed by a LSTM-
based LM.

In this task we should do speech recognition on full talk,
so we have to split the raw audio into sentence-like pieces for
speech recognition. We do speech segmentation with LSTM
based VAD model, which is trained on TED LIUM2 dataset
with speech/nonspeech labels extracted by force alignment
with our hybrid-HMM model.

3.2. post-processing vs data augmentation

It has been shown that post-processing is crucial for achiev-
ing good speech translation performance [4], this comes from
two aspects. First, segmentation boundaries for ASR are
based on VAD, which inevitably leads to fragments with
incomplete semantics, and sentence re-segmentation based
on ASR results is needed. Second, translation models are
trained with written text as input, which means text normal-
ization of ASR results is essential for conventional systems.

We know punctuations may contain rich semantic infor-
mation, but in post-processing for speech translation, punctu-
ations are only generated from ASR output word sequences.
In this case, these punctuations can not bring more informa-
tion than words. The main goal of post-processing is just to
produce text suitable for machine translation. However, it
should be noted that errors in punctuation prediction may be
propagated in machine translation process.
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Here we introduce a new solution with respect to mis-
match between ASR results and machine translation inputs.
Instead of transform ASR results to written text on decod-
ing step, we transform the source text for machine transla-
tion training data into the style of ASR results on training
step. The difficulty of normalizing ASR results to written
text seems equal to the difficulty of normalizing written text
to ASR results. However, data augmentation with fake ASR
results for machine translation is more robust for errors com-
pared to text normalization on decoding step.

We train a neural machine translation (NMT) model to
translate written text into ASR results. To build the training
data, we process the English written data by rule (remove
punctuations, lower case and translate Arabic numerals into
English words), the generated text is similar to ASR results
except for recognition errors. We also build real data with
the ASR results and source written texts provided in speech
translation dataset. The NMT model from written text to
ASR results are trained on these two dataset and fine-tuned
on only real data. This model may generate ASR output style
text with common ASR errors. And we augment the text
machine translation dataset by translating the source written
texts into ASR output style texts. As a comparison, we also
trained an inverted NMT for text normalization.

The data augmented based solution can translate directly
from ASR result, which reduces errors caused by text nor-
malization. Besides this, our model has the ability to tolerate
common recognition errors. E.g., our ASR system may mis-
take “two” to “to” in some special contexts, and our NMT
system may translate “top to percent” to “top zwei Prozent”.

Sentence re-segmentation are still important to speech
translation system, because training data for machine transla-
tion are all semantically complete sentences. Data augmenta-
tion with semantic incomplete sentence fragments may suffer
from reordering between source and target language. So we
train a LSTM based model to re-segmented sentences based
only on text infomation. This model is trained on TED and
OpenSubtitle dataset, with one whole paragraph as input, and
the punctuation ”.!?” as sentence boundaries.

3.3. machine translation

3.3.1. text machine translation

Transformer [13] is adopted as our baseline, all experiments
use the following hyper-paramter settings based on Ten-
sor2Tensor transformer relative big settings 1. This corre-
sponds to a 6-layer transformer with a model size of 1024,
a feed forward network size of 8192, and 16 heads relative
attention. Model is trained on the full dataset described in
Section 2.3 and fine-tuned on speech translation dataset. We
trained both conventional NMT model and NMT model with
augmented data described in Section 3.2.

1https://github.com/tensorflow/tensor2tensor/tree/v1.6.3

3.3.2. end-to-end speech translation

For our end-to-end speech translation model, DenseNet de-
scribed in Section 3.1 followed by one BiLSTM layer is em-
ployed as encoder, and the decoder is same as transformer
model in Section 3.3.1. It is difficult to train speech trans-
lation model from random initialization parameters, for re-
ordering between source and target language are difficult to
align with frame based speech representations. Pre-training
with speech recognition task significantly improves the per-
formance. And this encoder-decoder based ASR model is
used for rescoring our final ASR results.

End-to-end speech translation system has no chance to
re-segment sentences. We found splicing audio segments ac-
quired by VAD may improve the translation performance, but
still has a significant gap to performance based on sentence
re-segmentation.

4. Experimental Results
In this section, we present a summary of our experiments
for the IWSLT 2018 speech translation evaluation task. We
test WER (word error rate) for our speech recognition sys-
tem on dev2010, which is the only dataset with CTM format
transcriptions. And we test our speech translation systems
on IWSLT dev2010, tst2010, tst2013, tst2014 and tst2015.
Case sensitive BLEU based on realigning system outputs to
reference by minimizing WER [14] is used for our speech
translation evaluation metric.

4.1. Results of Speech Recognition

In this section, we demonstrate the results of our ASR sys-
tem. The acoustic model of our primary system is the deep
CNN model, and we decode with 3-gram for first-pass de-
coding and 4-gram for second-pass. We test our performance
in dev2010. First, we compare the impact of training data in
Table 3. Here “spv.” represents supervised data, “usv.” rep-
resents unsupervised data and “spd.” represents speed dis-
turbed data. As show in Table 4, by training with noisy data,
the WER is relatively reduced by 7.32%.

Table 3: WER for speech recognition with different training
data on dev2010

Training Data WER
spv. 9.7

noisy spv. 8.99
noisy spv. usv. 8.92

noisy spd. spv. usv. 8.86

Based on the above results, we train three acoustic mod-
els with different structures. Further promotion is achieved
by fusing multiple acoustic models, rescoring with RNN-
LM. We also test the encoder-decoder based speech recogni-
tion model described in Section 3.3.2, which performs signif-
icantly worse than our hybrid-HMM systems. But rescoring
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with encoder-decoder system brings a small improvement.
Details are showed in Table 4.

Table 4: Results of fusion of different models for speech
recognition on dev2010 .

DenseNet 8.86
BiLSTM 8.72
CLDNN 8.40
Encoder-Decoder 14.64
DenseNet +BiLSTM + CLDNN 8.22

+ RNN 7.61
+Encoder-Decoder 7.3

4.2. Results of End-to-end Speech Translation

In this section, we describe our experiments on end-to-end
speech translation. The average BLEU score of our base-
line end-to-end speech translation system is 20.50, which is
significantly worse than our pipeline system (Tabel 6). The
degradation comes from two aspects. Firstly, our encoder-
decoder speech recognition performs worse than baseline
speech recognition system (WER 7.61% to14.64%). Sec-
ondly, the end-to-end system has no chance to re-segment
sentences based on source recognition results.

To reduce the influence of incomplete sentence fragments
caused by VAD, we splice the VAD fragments to at least 10
seconds, which brings the improvements of about 1 BLEU.
For comparison, we present the performance of a system that
re-segment audio based on speech recognition results, which
brings another 1.3 BLEU gain, but this is not a ”end-to-end”
system. At last, the ensemble of 4 different models improves
about 1 BLEU compared to corresponding single model. The
details are showed in Table 5.

4.3. Results of Pipeline Speech Translation

In this section, experiments are all based on the best ASR re-
sults described in Section 4.1. At test time, we use a beam
size of 80 and a length penalty of 0.6. All data used for train-
ing are described in Section 2. All reported scores are com-
puted using IWSLT speech translation evaluation metric.

4.3.1. post processing

The post processing procedure.includes two parts: sentence
re-segmentation and text normalization. And we introduced
one data augmentation based solution to remove text normal-
ization. We compare the performance for different solutions
in Table 6.

We see sentence re-segmentation has a huge impact on
performance. Since sentence-like pieces obtained by VAD
do not carry any semantic information, it is very unfavorable
for machine translation. Other than this, our data augmenta-
tion based solution achieves a average BLEU score of 28.76,
1.3 BLEU higher over system with post processing. And we

found the models with text regularization and data augmen-
tation can be combined to get better results.

4.3.2. fusion of different models

We train 3 groups of different models, one for text regulariza-
tion and two for data augmentation (L2R and R2L, which de-
notes the target order left to right and right to left). For each
group we train 4 models with different initialized parame-
ters, and decoded with the ensemble models to get 80-best
hypotheses with beam size of 80. The 3 groups of hypothe-
ses are merged and rescored by all translation models, tar-
get language model and end-to-end speech translation model.
Performances are shown in Table 7.

4.4. Submission Results

We submitted 3 systems for speech translation task. The pri-
mary system is the best fusion system demonstrated at row
7 in Table 7, and the contrastive systems are all based on
encoder-decoder model from audio features. Contrastive0 is
based on sentence re-segmentation with source speech recog-
nition results, which is not real ”end-to-end”, while con-
trastive2 is real end-to-end systems with only single model.

We compared our submitted systems to KIT speech trans-
lation system (noted as ”Baseline KIT”)2, which is the base-
line system provided by KIT, performance is shown in Table
7. Our primary system achieves a average BLEU of 30.26,
which is 14.9 BLEU higher than baseline from KIT.

5. Conclusion
In this paper we presented our speech translation systems for
IWSLT 2018 evalution. Our results indicated that the end-to-
end system still performs significantly worse than the con-
ventional pipeline system, and NMT with data augmenta-
tion performs better than solutions with text regularization.
Our best ensemble system achieved 14.9 BLEU improve-
ment compared to baseline system from KIT.

6. References
[1] R. J. Weiss, J. Chorowski, N. Jaitly, Y. Wu,

and Z. Chen, “Sequence-to-sequence models can
directly translate foreign speech,” arXiv preprint
arXiv:1703.08581, 2017.

[2] L. Duong, A. Anastasopoulos, D. Chiang, S. Bird, and
T. Cohn, “An attentional model for speech translation
without transcription,” in Proceedings of the 2016 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language
Technologies, 2016, pp. 949–959.

[3] A. Bérard, L. Besacier, A. C. Kocabiyikoglu, and
O. Pietquin, “End-to-end automatic speech transla-

2https://github.com/jniehues-kit/SLT.KIT

73

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018



Table 5: BLEU scores for end-to-end speech translation .

system dev2010 tst2010 tst2013 tst2014 tst2015 average
VAD 21.45 21.41 21.76 20.06 17.83 20.50

splice 10s 22.14 22.16 22.76 21.00 19.52 21.52
re-segment 23.79 24.18 24.18 22.22 20.07 22.89

ensemble(splice) 23.43 22.97 23.58 21.96 20.67 22.52
ensemble(re-segment) 24.78 24.92 25.41 23.23 21.01 23.87

Table 6: BLEU scores for pipeline speech translation system

re-segment text regularization data augmentation dev2010 tst2010 tst2013 tst2014 tst2015 average
N Y N 26.47 27.71 28.04 25.65 24.00 26.37
N N Y 27.58 28.26 29.81 26.79 25.65 27.62
Y Y N 27.75 28.90 29.01 26.88 24.52 27.41
Y N Y 28.98 29.98 30.69 28.19 25.99 28.76

Table 7: BLEU scores for fusion systems

system dev2010 tst2010 tst2013 tst2014 tst2015 average
text normalization 28.64 29.41 29.59 27.37 25.13 28.03
augment L2R 29.45 30.01 30.78 28.37 26.14 28.95
augment R2L 28.42 29.58 30.88 27.98 26.47 28.66
fusion 30.28 31.01 32.28 29.38 27.40 30.07

+target LM 30.30 31.00 32.37 29.44 28.14 30.25
+e2e model 30.50 31.06 32.31 29.35 28.06 30.26

Table 8: performance of submitted systems

system end2end single model dev2010 test2010 test2013 test2014 test2015 average
Baseline KIT N Y 17.07 12.37 16.59 15.42 15.15 15.32
PRIMARY N N 30.50 31.06 32.31 29.35 28.06 30.26
Contrastive0 N N 24.78 24.92 25.41 23.23 21.01 23.87
Contrastive2 Y Y 22.14 22.16 22.76 21.00 19.52 21.52

74

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018



tion of audiobooks,” arXiv preprint arXiv:1802.04200,
2018.

[4] E. Cho, J. Niehues, and A. Waibel, “Nmt-based seg-
mentation and punctuation insertion for real-time spo-
ken language translation,” Proc. Interspeech 2017, pp.
2645–2649, 2017.

[5] C. Mauro, F. Marcello, B. Luisa, N. Jan, S. Se-
bastian, S. Katsuitho, Y. Koichiro, and F. Christian,
“Overview of the iwslt 2017 evaluation campaign,” in
International Workshop on Spoken Language Transla-
tion, 2017, pp. 2–14.
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Abstract
In this paper we present the ADAPT system built for the

Basque to English Low Resource MT Evaluation Campaign.
Basque is a low-resourced, morphologically-rich language.
This poses a challenge for Neural Machine Translation mod-
els which usually achieve better performance when trained
with large sets of data.

Accordingly, we used synthetic data to improve the trans-
lation quality produced by a model built using only authentic
data. Our proposal uses back-translated data to: (a) create
new sentences, so the system can be trained with more data;
and (b) translate sentences that are close to the test set, so the
model can be fine-tuned to the document to be translated.

1. Introduction
We participated in the Basque to English Low Resource MT
Evaluation Campaign as part of the International Workshop
on Spoken Language Translation (IWSLT) 2018. In this task,
we aimed to build an MT model to translate subtitles of TED
(Technology, Entertainment, Design) talks from Basque into
English.

Basque (or Euskera), which is mainly spoken in the
Basque Country in Northern Spain and Southern France,
is considered an isolated language. Linguistically, it is an
agglutinative language, and morphologically more complex
than English. Furthermore, Basque is a low resource lan-
guage. Due to these characteristics, creating an MT system
that deals with Basque is a challenging task.

As the MT Evaluation Campaign consists of translating
subtitles from TED talks, we built our MT engines mainly
from available subtitles. TED Talks1 is an event where ex-
perts in different fields, such as education, business, science,
etc. give a talk of up to 18 minutes to disseminate their ideas.

The use of subtitles as training data is potentially prob-
lematic as they may not be literal translation, causing the

1https://www.ted.com

original and translated sentences not to be truly parallel. This
is because subtitles are subjected to a great deal of adapta-
tion. Localization strategies (adapting the text to suit con-
sumers of a particular locale or culture), combined with the
requirement to meet time constraints (where sentences in
the source and target languages which have different length
are supposed to appear on the screen within the same time
frame), results in sentences which are comparable but not
necessarily parallel [1].

Although the adaptation does not hinder human compre-
hension of the intended message, when these sentences are
used as training data for an MT model, the translation inac-
curacies become obstacles for the system to correctly learn
to translate.

The system presented in this paper aims to overcome the
aforementioned problems. First, the creation of synthetic
data has two purposes: (i) it provides a new set of parallel
sentences that mitigates the problem of Basque being a low
resourced language; and (ii), artificially-created sentences
tend to be more literal than usual translated subtitles. There-
fore the former may constitute better training data for an MT
model than the latter. Secondly, as TED Talks topics cover a
wide variety of domains, we use data selection techniques to
adapt an MT model to a particular test set.

The remainder of the paper is structured as follows. In
Section 2, we describe related work regarding MT models
that include Basque as source or target language. We also
describe previous work on the use of synthetic data and data
selection algorithms that are related to the systems described
below. Section 3 describes the two steps (hybrid corpus cre-
ation and model adaptation) performed for building the MT
system. In Section 4 we present an estimation of the per-
formance of the models created. Finally, an overview of the
system is described in Section 5.

76

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018



2. Related Work
The system described in this paper is based on two main tech-
niques: (a) incorporating synthetic sentences as training data
(Section 2.2), and (b) adapting the model to the test set (Sec-
tion 2.3).

2.1. Basque Machine Translation

Most of the work on MT involving Basque is based on the
Basque-Spanish pair. We can find multiple MT approaches
including Rule Based MT (RBMT) [2], or data-driven ap-
proaches [3] such as Example-based MT [4] or hybrid (Sta-
tistical MT and RBMT) [5] systems.

Dealing with low-resource languages is a problem for
NMT approaches as they require large amounts of data in or-
der to generate good translations. For some language pairs,
SMT models can outperform NMT models when trained in
limited amount of data [6]. In the work of Unanue et al.
(2018) [7] they perform a comparison of Basque-English
SMT and NMT models. Their finding reveals that SMT
models trained with PaCo2-EuEn corpus in the Basque-to-
English direction perform better than NMT models. In the
reverse direction, however, NMT models can perform better
when pre-trained embeddings (which have been trained us-
ing additional sentences from Basque Wikipedia) are given
to the model.

Regarding Basque-Spanish NMT models, the most re-
cent work is presented by Etchegoyen et al. (2018) [8] where
they explored different methods of splitting words into mor-
phemes to improve the translation.

2.2. Addition of Back-translated Sentences

As Basque is a low-resource language, the amount of avail-
able parallel data is very limited. A technique to increase the
number of sentences is to artificially create sentences. Sen-
nrich et al. (2016) [9], showed that NMT models could be
boosted by adding backtranslated data.

Backtranslation in this paper designates the process of
translating monolingual sentences in the target language into
the source-side language. By doing this, a synthetic parallel
corpus is created. Adding this corpus as training data can
improve the performance of the model. In fact, models built
using solely back-translated data can even achieve compa-
rable performance to those trained with authentic or hybrid
data [10].

2.3. Adaptation of the MT Model to the Test Set

There are several techniques for adapting a model to a par-
ticular domain [11], such as selecting relevant data (data-
centric approaches), or modifying the model (model-centric
approaches).

In the case where the test set is available, it is possible
to adapt the model so it performs better in the given test. In
our work, we used a combination of data-centric and model-

centric approaches. First, we selected data that are relevant
for the test set, and then we used fine-tuning to bias the model
towards the test set.

Fine-tuning [12; 13], consists of using a pre-built NMT
model (trained on general domain data), and training the last
epochs on smaller amounts of in-domain data. An alternative
to this technique is gradual fine tuning [14], which involves
reducing the training data as the training proceeds.

While these fine-tuning techniques aim to adapt the NMT
models towards a particular domain, Li et al. (2018) [15]
proposed to use fine-tuning to adapt the model to the test set,
which is closer to our approach. The main difference is that
while in their work the model is adapted sentence-wise (one
model for each sentence), in ours, it is adapted document-
wise (one model for the document).

In order to select sentences that are closer to the test set
we used Feature Decay Algorithms (FDA) [16; 17; 18]. This
technique has been successfully applied in both SMT [19;
20; 21] and NMT [22].

FDA is a data selection method that not only aims to se-
lect sentences that are close to a seed (generally the test set),
but also to promote the variability of the training data se-
lected.

In order to achieve that, FDA scores each sentence s in
the parallel data, and the sentence with the highest score is
added to a list of selected sentences L. The score of the sen-
tence is based on how similar it is to the seed (counting the
n-grams shared with the seed), and how different it is to pre-
viously selected sentences (penalizing n-grams already con-
tained in L), which increases the variability.

Using default values of the parameters, the score of a sen-
tence is computed as in Equation (1):

score(s|L) =
∑

ngr∈s 0.5
CL(ngr)

length(s)
(1)

where CL(ngr) is the count of the n-gram ngr in the pool
of selected sentences L. The more occurrences of ngr there
are in L the more penalized ngr is. The factor 0.5CL(ngr) in
Equation (1) causes the n-gram to contribute less to the total
score of the sentence.

3. System Description
The system built consists of two steps. First, (Section 3.2)
we created a basic model using authentic and synthetic data.
In the second step (Section 3.3), the model was fine-tuned to
be adapted to the test set.

3.1. Basque-English Data

The Basque-English parallel data used in this work were
obtained by combining the OpenSubtitles2016 (173K sen-
tences), OpenSubtitles2018 [23] (805K sentences) and the
PaCo2-EuEn corpus2 [24] (130K sentences) provided in the

2komunitatea.elhuyar.org/ig/files/2016/01/PaCo_
EuEn_corpus.tgz
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IT domain MT Shared Task of WMT 2016 [25]. We ran-
domly sampled 5000 sentences as our dev set and the rest
(1M sentences) as the training set.

In order to build the NMT models we used OpenNMT-
py, which is the Pytorch port of OpenNMT [26]. All the
NMT models we built were configured with the same settings
(the only difference is the training data used to build them).
The value parameters were the default ones of OpenNMT-
py (i.e. 2-layer LSTM with 500 hidden units, vocabulary
size of 50000 words for each language). All the models were
executed for 13 epochs, and we also used Byte Pair Encoding
(BPE) [27] with 30000 merge operations, following the work
of Etchegoyen et al. (2018) [8].

3.2. Addition of Synthetic Data

Figure 1: Creation of hybrid parallel corpus.

The first step in the construction of a baseline system is
to extend the parallel corpus. In Figure 1 we present a dia-
gram of how we built the corpus. Using an initial corpus of
parallel Basque-English sentences we built an NMT model
capable of translating sentences from English into Basque.
Then, the English side of that parallel corpus was translated
into Basque using the English to Basque NMT model.

Intuitively, translating the same sentences that were fed
as training data should not be useful as it is likely to produce
very similar sentences. However, the sentences produced by
the model tend to be more literal translations, thereby avoid-
ing the problems previously mentioned.

In Table 1 we show some examples of how synthetic data
present Basque sentences that are closer to literal translation
than a human-produced sentences. For example, in the first
row, the translation for the English sentence “do I need to be
there?” is “joan behar dut?”, which literally means “do I have
to go?”. The artificially-created sentence is a more precise
translation, as it uses the verb “be” (“egon”) instead of the
verb “go” (“joan”). In certain contexts, the use of one or
another sentence does not affect the general understanding.
However, using the wrong translation as training data for a

model can hurt performance.
A similar effect is observed in the second row of Table 1

for the sentence “keep her steady, now.”. The Basque trans-
lation of this sentence is “ez dadila mugitu.” which uses the
verb “mugitu” (“to move”), so it could be translated as “it
shall not move” or “do not let it move”. In contrast, the MT
model produced the sentence, “eutsi gogor.”, which used the
verb “hold” (“eutsi”). Both translations are appropriate, but
they belong to different contexts.

Finally, we see in the third row the English sentence “a
suicide?”. The corresponding sentence in Basque is “nor
zen?” (“who was?”). In any other context, the two sentences
have completely different meanings. The synthetic sentence
by contrast is a literal translation.

Authentic
Basque

Synthetic
Basque

English

1 joan behar
dut?

hor egon behar
dut?

do I need to be
there?

2 ez dadila
mugitu.

eutsi gogor. keep her
steady, now.

3 nor zen? suizidioa? a suicide?

Table 1: Examples of sentences in Basque (authentic),
Basque (synthetic) and English translation.

Following backtranslation we obtained two parallel sets,
with authentic and synthetic sentences. Next, we concate-
nated them as a single corpus. Note that, by doing so, the
target-language sentences are duplicated.

Finally, we removed those sentences in which the length
of the source and target sides differed substantially. In our
work we kept a sentence pair (s, t) if 0.5 < len(s)

len(t) > 1.5,
in order to remove the 10% outliers. In total 255K sentences
were removed (137K sentences 118K sentences from authen-
tic and synthetic sets, respectively). The hybrid corpus con-
tained, therefore, 1.93M sentence pairs.

We applied these criteria to both corpus of authentic, and
synthetic sentences, so the potentially unaligned sentences
are ignored and bad translated sentences are not considered,
respectively.

3.3. Adaptation to the Test Set

The second step of building the model is to adapt it to a par-
ticular test set. The work of Poncelas et al. (2018) [22]
showed that when the test set is available during training time
it is possible to fine-tune a model to improve the translation
of that particular test set.

In Figure 2 we show how we fine-tuned our NMT model,
which requires three phases as follows:

1. Data Selection: In this phase we aimed to retrieve En-
glish sentences that were close to the test set. As the
test set was in Basque, we first created an approxi-
mated translation using the NMT model built as ex-
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Figure 2: Fine tuning with synthetic data

plained in Section 3.2. This translation can be used as
the seed for FDA and extract a set of sentences, from a
monolingual English corpus, that were close to the pre-
translated set and hence, to the test set. In this work we
extracted 50,000 sentences from English training data
provided in the WMT 2015 Translation Task [28].

2. Back-translation: The subset of selected English sen-
tences were back-translated (we reused the same En-
glish-to-Basque model built as explained in Section
2.2 to create backtranslated data) in order to build a
parallel corpus.

3. Fine-tuning: The synthetic parallel corpus was used to
fine-tune the MT model for one epoch. In this way, the
model was tailored to the test set.

4. Experimental Results
In order to estimate the performance of the final and inter-
mediate models described through Section 3 we evaluated
them using the development set (containing 1K sentences ex-
tracted from subtitles of TED talks) provided by the organiz-
ers of the IWSLT Evaluation Campaign.

The models evaluated are: (a) the model built with only
authentic data (base model); (b) the model built with the
combination of authentic and synthetic data (hybrid model);
and (c), the hybrid model adapted to the test set using FDA-
retrieved data (FDA model).

We used several evaluation metrics to compare the out-
puts of the three models to a human-translated reference. In
Table 2 we can see the evaluation scores for each model. The

base model hybrid
model

FDA model

BLEU 0.1315 0.1426* 0.1450*
NIST 4.459 4.683 4.733
TER 0.8508 0.8576 0.8666
METEOR 0.1429 0.1501* 0.1528**
CHRF3 34.05 35.92 36.24
CHRF1 37.40 38.67 38.81

Table 2: Evaluation of the model built only with authentic
data and using both authentic and synthetic data.

metrics we present are BLEU [29], NIST [30], TER [31],
METEOR [32] and CHRF3 [33].

We also marked in bold the scores that outperform those
of the base model (first column of Table 2) and marked with
an asterisk the scores (among BLEU, TER and METEOR)
that are statistically significant at level p=0.01. This was
computed with multeval [34] using Bootstrap Resampling
[35]. The two asterisks in column FDA model (METEOR
row) indicate that it is statistically significant at p=0.01 when
compared not only to the base model but also to the hybrid
model.

As mentioned in Section 3.2, the addition of synthetic
data (even if it consists of a backtranslation of the same data
used for training the model) is helpful. This is verified with
the results in column hybrid model in Table 2. As we can see,
most of the hybrid model scores of the model are better than
the model built with authentic data only (base model column)
and according to two of the scores, the improvements are sta-
tistically significant at p=0.01. In fact, a model built using
only synthetic data (Table 3) can achieve improvements over
the base model, according to METEOR and CHRF3 evalua-
tion metric.

synth.
model

BLEU 0.1224
NIST 4.074
TER 0.9769
METEOR 0.1481
CHRF3 36.22
CHRF1 36.40

Table 3: Evaluation of the model built with synthetic data
only.

Finally, fine-tuning the hybrid model using sentences that
are close to the test set is also beneficial. As we can see in
the column FDA model (in Table 2), most of the scores (ex-
cept TER) are better than those of the base model or even
the hybrid model, and according to METEOR metric the im-
provement is statistically significant at p=0.01.
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5. Conclusion
In this paper we have described the ADAPT system presented
for the Low Resource MT Evaluation Campaign of IWSLT
2018. The system translates from Basque into English.

Basque is a morphologically rich language, which causes
the task of building an MT model to be more difficult than
languages such as Spanish or German. Furthermore, the
available parallel Basque-English data are scarce.

Due to the limited resources of texts in Basque, we gener-
ated synthetic data that successfully boosted the performance
of the MT model trained solely with authentic sentences.

Additionally, we have used a supplementary monolingual
English corpus so we could retrieve sentences close to the
test set and further improve our model.
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Abstract
This paper presents the University of Helsinki submissions
to the Basque–English low-resource translation task. Our
primary system is a standard bilingual Transformer system,
trained on the available parallel data and various types of syn-
thetic data. We describe the creation of the synthetic datasets,
some of which use a pivoting approach, in detail. One of
our contrastive submissions is a multilingual model trained
on comparable data, but without the synthesized parts. Our
bilingual model with synthetic data performed best, obtain-
ing 25.25 BLEU on the test data.

1. Introduction
The University of Helsinki has participated in the IWSLT
low-resource translation task on Basque-to-English transla-
tion with one primary and two contrastive systems. Our ex-
periments mainly focused on creating synthetic training data
for classical supervised neural machine translation models.
In particular, we show that a bilingual system trained on
partly synthetic data performs better than a multilingual sys-
tem that includes the same data in their original, non syn-
thetic form. Our best submitted system obtained a BLEU
score of 25.25.

Section 2 describes the available Basque–English parallel
datasets at the basis of our systems, as well as a baseline sys-
tem trained on these parallel datasets alone. In Section 3, we
present additional datasets that contain either Basque or En-
glish text, but not both. We discuss several strategies for syn-
thetically creating parallel Basque–English datasets out of
these sources, and show the impact of these synthetic datasets
on translation quality. In Section 4, we present a contrastive
system that uses the additional datasets in their original state,
without the synthesized parts. Section 5 summarizes our sub-
missions and details the post-processing steps carried out at
prediction time.

2. Parallel Basque–English data
The IWSLT organizers released an in-domain data set for
Basque-to-English translation containing 64 TED talks for
training and 10 TED talks for development [1]. Another 10
TED talks have been held out for testing.

The only allowed out-of-domain data source containing
parallel Basque–English datasets is OPUS [2, 3]: it contains
computer program localization files (repositories GNOME,
KDE4 and Ubuntu), crowd-sourced translations (Tatoeba)
and film subtitles (OpenSubtitles2018). We only selected
OpenSubtitles2018 as the largest and most domain-similar
dataset for our experiments. Table 1 summarizes the avail-
able parallel data.1

Source Talks Lines EU tokens EN tokens

TED train 64 5623 97k 128k
OST — 806k 4.8M 6.5M
TED dev 10 1140 20k 27k

Table 1: Basque–English parallel data.

2.1. Baseline system

We trained a baseline system using only the parallel data
mentioned in the previous section. Data were tokenized and
truecased using the Moses scripts [4]; no effort was spent
on adapting the tokenization tools to Basque. Following the
good results on various typologically diverse language pairs,
we used the Transformer model setup [5] as implemented
in Marian-NMT [6] (see Appendix). We used an initial set-
ting of 20 000 BPE units [7] shared across both languages
with tied embeddings. Training of this model converged af-
ter about 20 hours on a single-GPU node, obtaining a BLEU
score of 15.40 on the development set (see first line of Ta-
ble 5).2

3. Synthetic data
Backtranslation has proven to be an effective way of improv-
ing the performance of neural machine translation systems
by taking advantage of existing monolingual datasets for the
target language [8]. Monolingual data of the target language
is translated to the source language using a target-to-source

1In all tables, validation and test sets are displayed in italics, whereas the
translation output of the described system is displayed in bold (if applicable).

2All BLEU scores were computed using the multi-bleu-detok.perl script
of the Moses distribution.
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translation system. The resulting bilingual dataset, whose
source is noisy, is then used as additional training data for
the source-to-target translation system.

In our setting, direct backtranslation would amount to
translating English data to Basque, but such an English-to-
Basque system would have to be trained on the same small
dataset as the baseline system presented above. Therefore,
we experimented with other ways of creating synthetic data,
exploiting the larger Spanish–Basque and Spanish–English
datasets and using Spanish as a pivot language [9].3 The
different data augmentation strategies are discussed in Sec-
tions 3.1 to 3.3, whereas the Basque-to-English systems
trained on these synthetic datasets are presented in Sec-
tion 3.4 and Table 5.

3.1. Direct backtranslation of TED talks

The provided in-domain data contains a total 2683 English
TED talks. Excluding those that already have Basque trans-
lations (for training, development or testing) and excluding
those that do not have a Spanish translation (to provide com-
parability with the experiment below), 2576 English TED
talks can be backtranslated to Basque.

Source Talks Lines EN tokens EU tokens

TED train 64 5623 128k 97k
OST — 806k 6.5M 4.8M
TED dev 10 1140 27k 20k

TED direct-BT 2576 271k 6.2M 3.9M

Table 2: Basque–English data used to train the backtrans-
lation model (above the line) and monolingual English data
backtranslated with this model (below the line, backtransla-
tion output in bold).

In this first experiment, we train an English-to-Basque
system analogously to the baseline system above, using the
same training data, parameter settings (20k joint BPE units)
and development set for validation, obtaining a BLEU score
of 8.65 on the English-to-Basque development set.4 This low
score confirmed our initial reservations about direct back-
translation. We nevertheless translate the monolingual En-
glish TED talks to Basque with this system. Table 2 summa-
rizes the data of this experiment.

3Note that we employ the term pivot language in the context of a data
augmentation strategy, not of a machine translation model per se. We take a
parallel corpus of languages 〈X,Y 〉 and translate its X side to language Z
using a X → Z machine translation system, yielding a corpus of languages
〈Z, Y 〉. This approach is simpler than the common acceptation of pivot-
based translation, where two (more or less independent) translation models
are trained, and the output of the first serves as the input of the second one.
Examples of recent work in this area include [10, 11].

4The BLEU score of a Basque-to-English system including these back-
translations is 21.04, as shown in the second row of Table 5.

3.2. Pivot-based backtranslation of TED talks

We hypothesize that the direct backtranslation approach
would not be particularly effective, as the system used to
generate them would suffer from the same data sparsity is-
sues as the baseline system (trained with the same data,
but in the other direction). In order to take advantage of
the other datasets provided by the organizers, we follow a
pivot-based approach along the lines of [9]: we take all
TED talks available in both English and Spanish (but not
Basque), translate the Spanish version to Basque, and align
the Basque side with the English side to constitute additional
Basque–English data. In this setting, the backtranslation
model needs to be trained on Spanish-to-Basque data; us-
ing the same 64+10 TED talks for training and validation, as
well as the out-of-domain Open Data Euskadi (ODE) dataset
and the Basque–Spanish OpenSubtitles (OST), we create a
Transformer model with the same parameters as the baseline
model. At the end of training, this system obtained a BLEU
score of 14.52 on the Spanish-to-Basque development set.

The resulting data consists thus of the same English tar-
get sentences as above but different Basque source sentences.
Details on the setup are given in Table 3. It is striking that
the Basque sentences translated via Spanish are considerably
longer than those translated directly from English (4501k
total tokens in Table 3 vs. 3886 total tokens in Table 2).
The experiments described below will show which of the
two datasets improves translation most, and whether the two
datasets are complementary or not.

Source Talks Lines ES tokens EU tokens

TED train 64 5546 124k 98k
OST — 794k 5.8M 4.8M
ODE — 927k 23.1M 17.5M
TED dev 10 1122 26k 20k

TED pivot-BT 2576 271k EN 6.2M 4.5M

Table 3: Basque–Spanish data used to train the backtrans-
lation model (above the line) and monolingual Spanish data
backtranslated to Basque and aligned with English (below
the line).

3.3. Pivot-based translation of Open Data Euskadi

Whereas backtranslation yields datasets with noisy source
sides and clean target sides, we also wanted to explore the
impact of a corpus with clean source side and noisy target
side. This approach is not generally used in standard high-
resource settings, but could yield additional improvements
in low-resource settings. The Open Data Euskadi corpus is
a good candidate for this approach. It is rather large and
contains Basque–Spanish parallel data. In order to create a
Basque–English version of this corpus, we proceed by trans-
lating the Spanish version to English and aligning it with the
existing Basque one.
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The Spanish–English system is trained using most of the
parallel data that was made available in WMT 2013, the last
year in which Spanish–English featured as a WMT news
translation language pair (see Table 4) [12]. In particular,
we use the CommonCrawl, Europarl V7, NewsCommentary
V12 and UN datasets for training,5 the NewsTest 2008-2012
corpora for validation and NewsTest 2013 for testing. We
did not use OpenSubtitles as we did not find it helpful for
translating the legal and news domain documents present in
Open Data Euskadi. Due to the larger training corpora sizes,
we increased the vocabulary to 40k joint BPE units, but kept
the same Transformer architecture and parameters otherwise.
This system obtained a BLEU score of 29.69 on the develop-
ment set and 31.45 on the test set, slightly surpassing the
best systems participating in WMT 2013.6 The figures of
the resulting Basque–English Open Data Euskadi corpus are
shown on the last line of Table 4.

Source Lines ES tokens EN tokens

CommonCrawl 1845k 49.5M 46.9M
Europarl 1965k 57.0M 54.5M
NewsCommentary 292k 8.5M 7.5M
UN 11196k 366.1M 320.0M
News dev 13k 357k 336k
News test 3k 70k 64k

ODE pivot-T 927k EU 17.3M 21.5M

Table 4: Spanish–English data used to train the translation
model (above the line) and monolingual Spanish data trans-
lated to English and aligned with Basque (below the line).

3.4. Bilingual systems using synthetic data

We trained various Basque-to-English systems with different
combinations of the synthetic datasets described above. All
experiments use the same Transformer model architecture,
but slightly different vocabulary sizes (see below).

For some experiments, we introduce variants with do-
main labels [14, 15]. Tars et al. have found domain labeling
useful to teach the model about possible domain mismatches
in the training data. In our experiments, we use four labels,
distinguishing text sources (TED, OST, OPD) and methods
of corpus construction (TED-parallel and TED-BT). The val-
idation and test instances are labeled as TED-parallel. Do-
main labels were included as the first tokens of each sen-
tence. Table 5 summarizes these experiments.

Table 5 shows that any additional synthetic dataset helps
in the given low-resource setting. The direct TED back-
translations are surprisingly helpful despite their low qual-

5We experimented with a reduced training set consisting of Europarl and
NewsCommentary only, but results were not quite as good as with the com-
plete training data.

6The best WMT 2013 submissions were the phrase-based statistical sys-
tems by the University of Edinburgh team, with BLEU scores of 31.37 in
the unconstrained setting and 30.59 in the constrained setting [13].

Training data Domain labels BPE BLEU

Parallel (= TED train + OST) No 20k 15.40

+ TED direct-BT No 20k 21.04

+ TED pivot-BT No 20k 23.20

+ TED direct-BT + ODE pivot-T No 30k 23.20
Yes 30k 23.84

+ TED pivot-BT + ODE pivot-T No 30k 24.22
Yes 30k 24.52

+ TED direct-BT + TED pivot-BT No 30k 24.39
+ ODE pivot-T Yes 30k 25.06

Table 5: Experiments with different combinations of training
data.

ity, although the pivot-based TED backtranslations are much
more useful, presumably due to the higher quality of the sys-
tem that generated them. The impact of the ODE synthetic
dataset is less remarkable, but still improves BLEU scores by
2-3 absolute points. Interestingly, the direct and pivot-based
TED backtranslations are somewhat complementary, yield-
ing slight improvements compared to using just the pivot-
based ones.

On the basis of the Parallel + TED pivot-BT model (third
line of Table 5), we performed a grid search to find the best
subword encoding scheme. We used various sizes of joint
BPE vocabularies with tied embeddings (10k, 15k, 20k, 25k,
30k, 35,) and various sizes of language-specific BPE vocab-
ularies in conjunction with distinct embeddings (10k, 15k,
20k, 25k, 30k, 35k per language). The difference between
the worst and best setting lay at 1.5 BLEU points. The best
results were achieved with joint vocabularies and tied em-
beddings and a total of 25k-30k subword units. The final
submissions were made with a joint vocabulary of 30k units,
like most experiments presented in Table 5.

Domain labels show consistent improvements of about
0.5 BLEU points. As mentioned above, we labeled the vali-
dation data with TED-parallel. Additional experiments using
other domain labels at test time have shown the following re-
sults: TED-BT +0.04 BLEU, OST -2.83 BLEU, OPD -4.70
BLEU, no label -1.71 BLEU. This experiment shows that the
TED-parallel and TED-BT labels yield similar results (the
difference is probably not statistically significant), suggest-
ing that the distinction between genuinely parallel and back-
translated TED data may not have been necessary. We nev-
ertheless kept the TED-parallel label also for the test data.

4. Multilingual system
Johnson et al. [14] have shown that multilingual transla-
tion models can be trained by using training data of various
languages and directions and prepending a target language
label to each source sentence. One interesting use case of
such multilingual models is zero-shot translation, where the
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System Model type and features BLEU NIST TER

Primary Bilingual model With sentence splitting 25.01 6.45 59.48
Contrastive 1 Bilingual model No sentence splitting 25.25 6.47 58.83
Contrastive 2 Multilingual model With sentence splitting 22.55 6.10 60.48

Table 6: Submitted systems and official results on the test set.

source language and target language have both been seen by
the model, but not in that particular combination. In our case,
we are not interested in zero-shot translation, as we do have
a sizeable set of Basque-to-English training data. Rather, we
wanted to see to what extent multilingual modelling could
supplant the creation of synthetic data. To this end, we train
a single multilingual model with the following datasets: the
parallel Basque–English TED and OpenSubtitles data (as in
the baseline model), the parallel English–Spanish TED data
in both directions (as used to train the pivot-based backtrans-
lation model), and the Basque–Spanish Open Data Euskadi
data (see Table 7). In this setting, we only have English and
Spanish as target languages and consequently only use the
two target language labels TO EN and TO ES. We do not
use additional domain labels in this experiment. The model
architecture remains the same, but we use a joint trilingual
vocabulary consisting of 40k BPE units.

Source Lines Source tokens Target tokens

TED train 5623 97k EU 128k EN
OST 805k 4.8M EU 6.5M EN
TED train 277k 6.3M EN 6.0M ES
TED train 277k 6.0M ES 6.3M EN
ODE 926k 17.5M EU 23.1M ES
TED dev 1140 20k EU 27k EN

Table 7: Data used to train the multilingual model.

Although we used almost the same datasets as in the
systems presented above (with the exception of the WMT
English–Spanish data), the multilingual model failed to
achieve competitive results, with 22.55 BLEU on the val-
idation set. There are several reasons for this lower-than-
expected performance. First, the training of the multilingual
model was stopped before convergence, after a training time
of 72 hours. Nevertheless, the learning curve does not in-
dicate the possibility of substantial improvements if train-
ing had continued. Second, the multilingual model has to
learn three languages on the source side and two languages
on the target side instead of a one-to-one mapping. Its task
is thus inherently more complex, and it seems that the three
languages in question (Basque, English and Spanish) are ty-
pologically too diverse for the model to generalize. Finally,
[14] show that good data sampling strategies are crucial when
training multilingual models with unbalanced data sizes. In
this regard, oversampling the Basque-to-English resources or
fine-tuning the model to the target language pair might have

helped. Despite its lower performance, we base one of our
contrastive submissions on the multilingual model.

5. Submissions
We decided to submit output from two models, the bilingual
system trained with all synthetic data and domain labels (last
line of Table 5), and the multilingual system described in
Section 4.

We have found in a different context [16] that systems
trained on single sentences may not be able to translate utter-
ances consisting of several sentences completely. Although
there was no particular evidence of such problems occurring
in the experiments at hand (since a large portion of the TED
training data already contains multi-sentence utterances), we
carried out some experiments on this issue. Concretely, we
applied a simple sentence splitter to the source text, trans-
lated each sentence separately, and merged them back to-
gether. In the validation set, 214 (of 1140) lines were split,
and sentence splitting improved the BLEU score by 0.26
points. However, qualitative inspection of the results did not
show convincing evidence in favor or against sentence split-
ting. Therefore, we submitted systems with and without sen-
tence splitting.

Also, due to an error in the postprocessing script, the sub-
mitted translations were accidentally detokenized with the
Basque detokenizer (and some additional rules) rather than
the English one. The added rules minimized the adverse ef-
fect of this error, such that it only affected two tokens in the
test set, resulting in an estimated impact on BLEU score of
about 0.01.

Table 6 summarizes the submitted systems with the offi-
cial results. Sentence splitting turned out to have a slightly
negative impact on the translation of the test set, whereas the
difference between the bilingual and multilingual system is
comparable to the one that was observed with the validation
set.

6. Conclusions
The University of Helsinki submissions on Basque–English
leverage the existing parallel corpora for other language pairs
to create synthetic data of various types. In particular, we
have found pivot-based (back-)translation to be a useful ap-
proach to increase the amounts of Basque–English training
data. In this setting, one side of a parallel corpus is translated
to a third language, and this translated output is then aligned
with the other side of the original parallel corpus. By using

86

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018



various synthetic datasets, we were able to increase transla-
tion performance from 14.68 BLEU to 25.06 BLEU on the
development set.

Our contrastive multilingual model performed less well,
although it saw almost the same data as the bilingual model
and its auxiliary models used to create the synthetic data. It
remains to be seen if better balancing of the training data,
possibly including some fine-tuning, as well as the inclu-
sion of domain labels and additional Spanish–English train-
ing data could make this model more competitive. Also,
both approaches could be combined by training a multilin-
gual model with added synthetic data.
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8. Appendix
All models presented in this paper were trained us-
ing the parameter settings described in https:
//github.com/marian-nmt/marian-examples/
tree/master/transformer, which correspond
roughly to the base setup of [5].

The relevant parameters are as follows:
marian --type transformer
--max-length 200 --mini-batch-fit
-w 10000 --maxi-batch 1000
--early-stopping 10 --valid-freq 5000
--valid-metrics cross-entropy
perplexity translation
--valid-mini-batch 64 --beam-size 6
--normalize 0.6 --enc-depth 6
--dec-depth 6 --transformer-heads 8
--transformer-postprocess-emb d
--transformer-postprocess dan
--transformer-dropout 0.1
--label-smoothing 0.1
--learn-rate 0.0003 --lr-warmup 16000
--lr-decay-inv-sqrt 16000
--optimizer-params 0.9 0.98 1e-09
--clip-norm 5 --tied-embeddings-all
--sync-sgd --exponential-smoothing
--seed 1111
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Abstract

This paper describes the MeMAD project entry to the IWSLT
Speech Translation Shared Task, addressing the translation
of English audio into German text. Between the pipeline and
end-to-end model tracks, we participated only in the former,
with three contrastive systems. We tried also the latter, but
were not able to finish our end-to-end model in time.

All of our systems start by transcribing the audio into
text through an automatic speech recognition (ASR) model
trained on the TED-LIUM English Speech Recognition
Corpus (TED-LIUM). Afterwards, we feed the transcripts
into English-German text-based neural machine transla-
tion (NMT) models. Our systems employ three different
translation models trained on separate training sets compiled
from the English-German part of the TED Speech Transla-
tion Corpus (TED-TRANS) and the OPENSUBTITLES2018
section of the OPUS collection.

In this paper, we also describe the experiments leading
up to our final systems. Our experiments indicate that us-
ing OPENSUBTITLES2018 in training significantly improves
translation performance. We also experimented with various
pre- and postprocessing routines for the NMT module, but
we did not have much success with these.

Our best-scoring system attains a BLEU score of 16.45
on the test set for this year’s task.

1. Introduction
The evident challenge of speech translation is the transfer
of implicit semantics between two different modalities. An
end-to-end solution to this task must deal with the challenge
posed by intermodality simultaneously with that of inter-
lingual transfer. In a traditional pipeline approach, while
speech-to-text transcription is abstracted from translation,
there is then the additional risk of error transfer between
the two stages. The MeMAD project1 aims at multilingual

1https://www.memad.eu/

description and search in audiovisual data. For this reason,
multimodal translation is of great interest to the project.

Our pipeline submission to this year’s speech transla-
tion task incorporates one ASR model and three contrastive
NMT models. For the ASR module, we trained a time-delay
neural network (TDNN) acoustic model using the Kaldi
toolkit [1] on the provided TED-LIUM speech recognition
corpus [2]. We used the transformer implementation of Mar-
ianNMT [3] to train our NMT models. For these models,
we used contrastive splits of data compiled from two differ-
ent sources: The n-best decoding hypotheses of the TED-
TRANS [4] in-domain speech data, and a version of the
OPENSUBTITLES2018 [5] out-of-domain text data (SUBS),
further “translated” to an ASR-like format (SUBS-ASR)
using a sequence-to-sequence NMT model. The primary
system in our submission uses the NMT model trained
on the whole data including SUBS-ASR, whereas one of
the two contrastive systems uses the original SUBS before
the conversion to an ASR-like format, and the other omits
OPENSUBTITLES2018 altogether.

We provide further details about the ASR module in Sec-
tion 2. Later, we provide a review of our experiments on
the NMT module in Section 3. The first experiment we de-
scribe involves a pre-processing step where we convert our
out-of-domain training data to an ASR-like format to avoid
mismatch between source-side training samples. Afterwards,
we report a postprocessing experiment where we retrain our
NMT models with lowercased data, and defer case restora-
tion to a subsequent procedure, and another where we trans-
late several ASR hypotheses at once for each source sample,
re-rank their output translations by a language model, and
then choose the best-scoring translation for that sample. We
present our results in Section 4 along with the relevant dis-
cussions.

2. Speech Recognition
The first step in our pipeline is automatic speech recogni-
tion. The organizers provide a baseline ASR implementation,
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which consists of a single, end-to-end trained neural network
using a Listen, Attend and Spell (LAS) architecture [6]. The
baseline uses the XNMT toolkit [7]. However, we were not
able to compile the baseline system, so we trained our own
conventional, hybrid TDNN-HMM ASR system using the
Kaldi toolkit.

2.1. Architecture

Our ASR system uses the standard Kaldi recipe for the TED-
LIUM dataset (release 2), although we filter out some data
from the training set to comply with the IWSLT restrictions.
The recipe trains a TDNN acoustic model using the lattice-
free maximum mutual information criterion [8]. The audio
transcripts and large amount of out-of-domain text data in-
cluded with the TED-LIUM dataset are used to train a heav-
ily pruned 4-gram language model for first-pass decoding
and less pruned 4-gram model for rescoring.

2.2. Word Error Rates

The LAS architecture has achieved state-of-the-art word er-
ror rates (WER) on a task with two orders of magnitude more
training data than here [9], but on smaller datasets hybrid
TDNN-HMM ASR approaches are still considerably better.
Table 1 shows the results of our ASR model contrasted with
those reported by XNMT in [7], on the TED-LIUM devel-
opment and test sets.

Model Dev WER Test WER
TDNN + large 4-gram 8.24 8.83
LAS 15.83 16.16

Table 1: Word error rates on the TED-LIUM dataset.

3. Text-Based Translation
The ASR stage of our pipeline effectively converts the task
of speech translation to text-based machine translation. For
this stage, we build a variety of NMT setups and assess their
performances. We experiment variously with the training ar-
chitecture, different compositions of the training data, and
several pre- and postprocessing methods. We present these
experiments in detail in the subsections to follow, and then
discuss their results in Section 4.

3.1. Data Preparation

We used the development and test sets from 2010’s shared
task for validation during training, and the test sets from the
tasks between 2013 and 2015 for testing performance during
development. In all of our NMT models, we preprocessed
our data using the punctuation normalization and tokeniza-
tion utilities from Moses [10], and applied byte-pair encod-
ing [11] through full-cased and lowercased models as rele-
vant, trained on the combined English and German texts in

TED-TRANS and SUBS using 37,000 merge operations to
create the vocabulary.

We experiment with attentional sequence-to-sequence
models using the Nematus architecture [12] with tied em-
beddings, layer normalization, RNN dropout of 0.2 and
source/target dropout of 0.1. Token embeddings have a di-
mensionality of 512 and the RNN layer units a size of 1024.
The RNNs make use of GRUs in both, encoder and de-
coder. We use validation data and early stopping after five cy-
cles (1,000 updates each) of decreasing cross-entropy scores.
During training we apply dynamic mini-batch fitting with a
workspace of 3GB. We also enable length normalization.

For the experiments with the transformer architecture we
apply the standard setup with six layers in encoder and de-
coder, eight attention heads and a dynamic mini-batch fit to
8GB of work space. We also add recommended options such
as transformer dropout of 0.1, label smoothing of 0.1, a learn-
ing rate of 0.0003, a learning-rate warmup with a linearly in-
creasing rate during the first 16,000 steps, a decreasing learn-
ing rate starting at 16,000 steps, a gradient clip norm of 5 and
exponential smoothing of parameters.

All translations are created with a beam decoder of size
12.

3.1.1. ASR Output for TED Talks

Translation models trained on standard language are not a
good fit for a pipeline architecture that needs to handle noisy
output from the ASR component discussed previously in
Section 2. Therefore, we ran speech recognition on the entire
TED-TRANS corpus in order to replace the original, human-
produced English transcriptions with ASR output, which has
realistic recognition errors.

To generate additional speech recognition errors to the
training transcripts, we selected the top-50 decoding hy-
potheses. We did the same also for the development data
to test our approach. We can now sample from those ASR
hypotheses to create training data for our translation models
that use the output of English ASR as its input. We experi-
mented with various strategies varying from a selection of the
top n ASR candidates to different mixtures of hypotheses of
different ranks of confidence. Some of these are shown in Ta-
ble 2. In the end, there was not a lot of variance between the
scores resulting from this selection, and we decided to use
the top-10 ASR outputs in the remaining experiments to en-
courage some tolerance for speech recognition errors in the
system.

3.1.2. Translating Written English to ASR-English

The training data that includes audio is very limited and
much larger resources are available for text-only systems.
Especially useful for the translation of TED talks is the col-
lection of movie subtitles in OPENSUBTITLES2018. For
English-German, there is a huge amount of movie subtitles
(roughly 22 million aligned sentences with over 170 million
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Training data Model BLEU
TED-ASR-TOP-1 AMUN 16.65
TED-ASR-TOP-10 AMUN 16.28
TED-ASR-TOP-50 AMUN 15.88
TED-ASR-TOP-1 TRANSFORMER 18.25
TED-ASR-TOP-10 TRANSFORMER 17.90
TED-ASR-TOP-50 TRANSFORMER 18.14

Table 2: Translating the development test set with different
models and different selections of ASR output and German
translations from the parallel TED-TRANS training corpus.

tokens per language) that can be used to boost the perfor-
mance of the NMT module.

The problem is, of course, that the subtitles come in reg-
ular language, and, again, we would see a mismatch between
the training data and the ASR output in the speech translation
pipeline. In contrast to approaches that try to normalize ASR
output to reflect standard text-based MT input such as [13],
we had the idea to transform regular English into ASR-like
English using a translation model trained on a parallel corpus
of regular TED talk transcriptions and the ASR output gen-
erated for the TED talks that we described in the previous
section. We ran a number of experiments to test the perfor-
mance of such a model. Some of the results are listed in
Table 3.

Training data Model BLEU
TED-ASR-TOP-10 AMUN 61.87
TED-ASR-TOP-10 TRANSFORMER 61.91
TED-ASR-TOP-50 AMUN 61.82

Table 3: Translating English into ASR-like English using a
model trained on TED-TRANS and tested on the develop-
ment test set with original ASR output as reference.

As expected, the BLEU scores are rather high as the tar-
get language is the same as the source language, and we only
mutate certain parts of the incoming sentences. The results
show that there is not such a dramatic difference between the
different setups (with respect to the model architecture and
the data selection) and that a plain attentional sequence-to-
sequence model with recurrent layers (AMUN) performs as
well as a transformer model (TRANSFORMER) in this case.
This makes sense, as we do not expect many complex long-
distance dependencies that influence translation quality in
this task. Therefore, we opted for the AMUN model trained
on the top-10 ASR outputs, which we can decode efficiently
in a distributed way on the CPU nodes of our computer clus-
ter. With this we managed to successfully translate 99% of
the entire SUBS collection from standard English into ASR-
English. We refer to this set as SUBS-ASR.

We did a manual inspection on the result as well to see

what the system actually learns to do. Most of the transfor-
mations are quite straightforward. The model learns to low-
ercase and to remove punctuation as our ASR output does
not include it. However, it also does some other modifica-
tions that are more interesting from the viewpoint of an ASR
module. While we do not have systematic evidence, Table 4
shows a few selected examples that show interesting patterns.
First of all, it learns to spell out numbers (see “2006” in
the first example). This is done consistently and quite accu-
rately from what we have seen. Secondly, it replaces certain
tokens with variants that resemble possible confusions that
could come from a speech recognition system. The replace-
ment of “E.U.” with “you” and “Stasi” with “stars he” in
these examples are quite plausible and rather surprising for a
model that is trained on textual examples only. However, to
conclude that the model learns some kind of implicit acoustic
model would be a bit far-fetched, even though we would like
to investigate the capacity of such an approach further in the
future.

Original Because in the summer of 2006, the E.U.
Commission tabled a directive.

ASR-REF because in the summer of two thousand and
six the e u commission tabled directive

ASR-OUT because in the summer of two thousand and
six you commission tabled a directive

Original Stasi was the secret police in East
Germany.

ASR-REF what is the secret police in east germany
ASR-OUT stars he was the secret police in east

germany

Table 4: Examples from the translations to ASR-like English.
In the first column, ASR-REF refers to the top decoding hy-
pothesis from the ASR model, while ASR-OUT is the output
of the model translating the output to an ASR-like format.

In Section 4, we report on the effect of using synthetic
ASR-like data on the translation pipeline.

3.2. Recasing Experiments

Our first attempt at a post-processing experiment involved
using case-insensitive translation models, and deferring case
restoration to a separate process unconditioned by the source
side that we would apply after translation. We used the
Moses toolkit [10] to train a recaser model on TED-TRANS.
Afterwards, we re-trained a translation model on TED-
ASR-TOP-10 and SUBS-ASR after lowercasing the train-
ing and validation sets, re-translated the development test set
with this model, and then used the recaser to restore cases
in the lowercase translations that we obtained. As shown in
Table 5, evaluating the translations produced through these
additional steps yielded scores that were very similar to those
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obtained by the original case-sensitive translation models,
and the result of this experiment was inconclusive.

Training data BLEU BLEU-LC

TED-ASR-TOP-10+SUBS-ASR 19.79 20.43
TED-ASR-TOP-10+SUBS-ASR-LC 19.73 20.91

Table 5: Case-sensitive models (TRANSFORMER) versus
lowercased models with subsequent recasing. Recasing
causes a larger drop than the model gains from training on
lowercased training data. BLEU-LC refers to case-insensitive
BLEU scores.

3.3. Reranking Experiments

In addition to using different subsets of the n-best lists out-
put by the ASR model as additional training samples for the
translation module, we also tried reranking alternatives using
KenLM [14]. We initially generated a tokenized and lower-
cased version of TED-TRANS with all punctuation stripped,
and then trained a language model on this set. We used this
model to score and rerank samples in the 50-best lists, and
then generated a new top-10 subset from this reranked ver-
sion. However, when we re-trained translation models from
these alternative sets, we observed that the model trained on
the top-10 subsets before reranking exhibited a significantly
better translation performance. We suspect that this is be-
cause, while the language model is useful for assessing the
surface similarity of the ASR outputs to the source-side ref-
erences, it was not uncommon for it to assign higher scores
to ASR outputs that are semantically inconsistent with the
target-side references, causing the NMT module to produce
erroneous translations.

Similarly, we experimented with another language model
trained on the target side of TED-TRANS, without the pre-
processing. We intended this model to score and rerank out-
puts of the translation models, rather than the ASR module.
To measure the effect of this language model, we fed the au-
dio of our internal test set split through the ASR module, and
produced 50-best lists for each sample. Afterwards, we used
the language model to score and rerank the alternative tran-
scripts for each sample produced by translating this set, and
then selected the highest-scoring output for each sample. As
in the previous language model experiment, employing this
additional procedure significantly crippled the performance
of our translation models.

4. Results
The results on development data reveal expected tenden-
cies that we report below. First of all, as consistent with a
lot of related literature, we can see a boost in performance
when switching from a recurrent network model to the trans-
former model with multiple self-attention mechanisms. Ta-
ble 6 shows a clear pattern of the superior performance of

the transformer model that is also visible in additional runs
that we do not list here. Secondly, we can see the importance
of additional training data even if they come from slightly
different domains. The vast amount of movie subtitles in
OPENSUBTITLES2018 boosts the performance by about 3
absolute BLEU points. Note that the scores in Table 6 refer
to models that do not use subtitles transformed into ASR-like
English (SUBS-ASR) and which are not fine-tuned to TED
talk translations.

Training data Model BLEU
TED-ASR-TOP-10 AMUN 16.28
TED-ASR-TOP-10+SUBS AMUN 19.93
TED-ASR-TOP-10 TRANSFORMER 17.90
TED-ASR-TOP-10+SUBS TRANSFORMER 20.44

Table 6: Model performance on the development test set
when adding movie subtitles to the training data.

The effect of pre-processing by producing ASR-like En-
glish in the subtitle corpus is surprisingly negative. If we
look at the scores in Table 7, we can see that the performance
actually drops in all cases when considering only the untuned
systems. We did not really expect that with the rather posi-
tive impression that we got from the manual inspection of the
English-to-ASR translation discussed earlier. However, it is
interesting to see the effect of fine-tuning. Fine-tuning here
refers to a second training procedure that continues training
with pure in-domain data (TED talks) after training the gen-
eral model on the entire data set until convergence on vali-
dation data. Table 7 shows an interesting effect that may ex-
plain the difficulties of the integration of the synthetic ASR
data. The fine-tuned model actually outperforms the model
trained on standard data, which is due to a substantial jump
from untuned models to the tuned version. The difference be-
tween those models with standard data is, on the other hand,
only minor.

BLEU
Training data Untuned Tuned
TED-ASR-TOP-10+SUBS 20.44 20.58
TED-ASR-TOP-10+SUBS-ASR 19.79 20.80

Table 7: Training with original movie subtitles versus sub-
titles with English transformed into ASR-like English, be-
fore and after fine-tuning on TED-ASR-TOP-10 as pure in-
domain training data (TRANSFORMER).

The synthetic ASR data look more similar to the TED-
ASR data and, therefore, the model might get more confused
between in-domain and out-of-domain data than it does for
the model trained on the original subtitle data in connection
with TED-ASR. Fine-tuning to TED-ASR brings the model
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back on track again and synthetic ASR data becomes mod-
estly beneficial.

Also of note is the contrast between the evaluation scores
we obtained in development and those from the official test
set. The translations we submitted obtain the BLEU scores
shown in Table 8 on this year’s test set.

Training data BLEU
TED-ASR-TOP-10 14.34
TED-ASR-TOP-10+SUBS 16.45
TED-ASR-TOP-10+SUBS-ASR 15.80

Table 8: BLEU scores from our final models
(TRANSFORMER)—respectively, the 2nd contrastive,
1st contrastive, and primary submission—on this year’s
test set. The scores from the two models with SUBS
in their training data were obtained after fine-tuning on
TED-ASR-TOP-10.

5. Conclusions
Apart from employing well-established practices such as nor-
malization and byte-pair encoding as well as the benefits of
using the transformer architecture, the only substantial boost
to translation performance came from our data selection for
the NMT module. The NMT module of our best-performing
system on this year’s test set was trained on TED-ASR-
TOP-10 and the raw SUBS, and later fine-tuned on TED-
ASR-TOP-10.

Although we ran many experiments to improve various
steps of our speech translation pipeline, their influence on
translation performance has been marginal at best. The ef-
fects of training with different TED-ASR subsets were hard
to distinguish. While using SUBS-ASR in training seemed
to provide a modest improvement in development, this ef-
fect was not carried over to the final results on the test set.
The later experiments with lowercasing and recasing had an
ambiguous effect, and those with reranking had a noticeably
negative outcome.

In future work, our aim is to further investigate what fac-
tors in a good speech translation model, and continue exper-
imenting in relation to these on the NMT module. We will
also try to improve our TDNN-HMM ASR module by replac-
ing the n-grams with an RNNLM, and try see how our com-
plete end-to-end speech-to-text translation model performs
after having sufficient training time.
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Abstract
This paper presents Prompsit Language Engineering’s sub-
mission to the IWSLT 2018 Low Resource Machine Trans-
lation task. Our submission is based on cross-lingual learn-
ing: a multilingual neural machine translation system was
created with the sole purpose of improving translation qual-
ity on the Basque-to-English language pair. The multilin-
gual system was trained on a combination of in-domain data,
pseudo in-domain data obtained via cross-entropy data selec-
tion and backtranslated data. We morphologically segmented
Basque text with a novel approach that only requires a dic-
tionary such as those used by spell checkers and proved that
this segmentation approach outperforms the widespread byte
pair encoding strategy for this task.

1. Introduction
This paper presents Prompsit Language Engineering’s sub-
mission to the IWSLT 2018 Low Resource Machine Trans-
lation task. The objective of this task is building an MT sys-
tem for translating TED talks from Basque to English from
a very limited amount of in-domain Basque–English parallel
data. We relied on cross-lingual learning via a multilingual
approach [1] to neural machine translation (NMT), extraction
and cleaning of pseudo in-domain parallel text from out-of-
domain data, and backtranslation of Spanish text into Basque
for building our submission.

Moreover, we applied morphological segmentation to the
Basque text. We took advantage of an existing spell check-
ing dictionary and its inflection paradigms and used an au-
tomatic morphology inference model to decide between am-
biguous segmentations. We proved that this method, that re-
quires shallower linguistic information1 than other segmen-
tation approaches based on full morphological analysis and
disambiguation [2, 3], outperforms the widespread byte pair
encoding (BPE) segmentation strategy [4] in terms of trans-
lation quality for Basque-to-English NMT.

1Neither part of speech/morphological information in the dictionary nor
a part of speech tagger/parser are needed. In principle, this approach
could be applied to any language for which a Hunspell-based (http:
//hunspell.github.io/) spell checker exists.

Table 1: Size of in-domain data. Processed segments are
those that remain after removing talks included in the devel-
opment and test sets.

Language pair # raw segments # processed segments
eu-en 5 687 5 687
eu-es 6 742 5 610
eu-fr 7 021 5 878
es-en 280 947 279 737
fr-en 290 961 289 722

The remainder of the paper explains the steps followed
to build the submitted NMT system. Next section explains
how the in-domain and out-of-domain parallel corpora were
processed and filtered, while Section 3 focuses on describing
and assessing the impact of the morphological segmentation
approach followed. Section 4 describes the NMT architec-
ture and training process. Section 5 depicts the process fol-
lowed to obtain the data set used to train our submission.
Finally, the most relevant related approaches are reviewed in
Section 6 and the paper ends with some concluding remarks.

2. Data acquisition and cleaning
Our submission was trained on a combination of in-domain
and out-of-domain data. The only special cleaning applied
to the in-domain training data provided by the organiza-
tion is the removal of talks that are also included in the
test/development sets. Table 1 shows the number of segments
in the in-domain data for each language pair before and after
removing such talks.

Following the shared task instructions,2 we built the out-
of-domain data collection by downloading all the corpora
available from the Opus [5] and WMT [6] websites.3 We
also included the Basque–Spanish parallel data from Open

2https://sites.google.com/site/
iwsltevaluation2018/TED-tasks

3If the same corpus was available from both websites (e.g. Europarl), we
downloaded it from WMT. If the same corpus was available from different
WMT editions, we downloaded it from the most recent one. We skipped
some corpora from Opus which were too noisy, like EUBookshop.
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Table 2: Size of out-of-domain data before and after applying
shallow cleaning.

Language pair # raw segments # clean segments
eu-en 1.81M 928K
eu-es 1.64M 1.41M
eu-fr 711K 375K

Table 3: Size of out-of-domain data before and after applying
aggressive cleaning.

Language pair # raw segments # clean segments
es-en 163M 65M
fr-en 164M 77M

Data Euskadi Repository published by the task organizers.
We followed two different strategies for out-of-domain

parallel data cleaning. For language pairs with limited data
availability, namely those including Basque, we followed a
conservative shallow cleaning strategy since removing cor-
rect segments can be harmful for the quality of the final sys-
tem. For the remaining language pairs, since only a subset
of the data is finally used (see Section 5), we applied a more
aggressive cleaning strategy.

The shallow cleaning consisted in deduplication and re-
moval of parallel segments that meet any of the following
conditions: they contain a low proportion of alphabetic char-
acters, their source-language (SL) and target-language (TL)
side are very similar (there is a low edit distance between
them), they are too long or too short (shorter than 3 tokens or
longer than 100), or they are written in another language (lan-
guage is detected by means of cld24 and segments are only
discarded when the language detection is reliable according
to the cld2 algorithm). Table 2 shows the size of the out-of-
domain data for each language pair containing Basque before
and after applying shallow cleaning.5

The aggressive cleaning consisted in two steps. Firstly,
parallel segments were deduplicated and a more aggres-
sive superset of the rules used in the shallow clean-
ing (implemented in the translation memory cleaning tool
Bicleaner6) was applied. These rules are addressed at de-
tecting evident flaws such as encoding errors, very different
lengths in parallel segments, etc. Secondly, misaligned seg-
ments were detected and removed by means of an automatic
classifier, described in [7]. The classifier is also part of the
Bicleaner tool. Pre-trained models for the classifier were
obtained from the Paracrawl project.7 Table 3 shows the size
of the out-of-domain data for each language pair before and
after applying the aggressive cleaning.

4https://github.com/CLD2Owners/cld2
5Shallow cleaning was not applied to the Basque–Spanish parallel data

from Open Data Euskadi Repository.
6https://github.com/bitextor/bicleaner
7https://github.com/bitextor/bitextor-data/tree/

master/bicleaner

3. Morphological segmentation for Basque
Word segmentation based on linguistically-informed strate-
gies such as morphological analysis [2] or simpler alterna-
tives based on lists of relevant prefixes and suffixes [8] have
shown to be able to outperform the popular BPE approach [4]
for some agglutinative and highly inflected languages. In
this section, we present the pseudo-morphological segmen-
tation approach based on inflection paradigms we applied to
Basque text in our submission and prove that it outperforms
BPE.

3.1. Pseudo-morphological segmentation based on inflec-
tion paradigms

Inflection paradigms are commonly used in dictionaries
(morphological dictionaries used in rule-based machine
translation, spell checkers, etc.) in order to group regularities
in the inflection of a set of words.8 A paradigm is usually
defined as a collection of suffixes and, optionally, their cor-
responding part-of-speech/morphological information; e.g.,
the paradigm assigned to many common English verbs indi-
cates that by adding the suffix -ing to the stem, the gerund is
obtained; by adding the suffix -ed, the past is obtained; etc.
While morphological dictionaries from rule-based machine
translation systems contain morphological information, spell
checkers usually lack this information.

In languages with a high inflection degree, such as
Basque, a surface form can be built by sequentially append-
ing suffixes from different paradigms to a stem. For in-
stance, the word etxekoak can be generated from the entry
etxe+ PAR240 if paradigm PAR240 contains the suffixes
−ko+ PAR243, −z, −rekin, etc. and paradigm PAR243
contains the suffix −ak.

As suffixes contained in inflection paradigms are usually
based on linguistic knowledge, one can take advantage of
inflection paradigms for splitting words for training NMT
systems. In this way, words can be split in atomic units of
meaning or morphs. For instance, in previous example, etx-
ekoak (the plural form of “domestic”) would be split into etxe
(“house”), -ko (adjectivation) and -ak (plural mark).

In order to split a corpus using inflection paradigms, there
are two types of words for which an additional strategy needs
to be devised:

• Homograph words: those that can be generated by
multiple combinations of stem and suffix(es).

• Unknown words: those that are not present in the mor-
phological dictionary/spell checking dictionary.

In order to decide the best segmentation for these words,
we took advantage of semi-supervised morphology learning
methods. In particular, we used Morfessor [9]. Morfessor is

8Paradigms ease dictionary management by reducing the quantity of in-
formation that needs to be stored, and by simplifying revision and validation
because of the explicit encoding of regularities in the dictionary.
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a family of methods for automatic learning of morphology
based on the minimum description length principle [10]: the
words in a corpus are split in morphs in such a way that the
size of the morph vocabulary and the length in tokens of the
corpus are minimized. We used a semi-supervised variant
of Morfessor in which the segmentation model can be esti-
mated from a plain corpus and a set of already segmented
words [11].

Our pseudo-morphological segmentation strategy com-
prises the following steps:

1. Segment words encoded in the morphological dictio-
nary/spell checker which have only a candidate seg-
mentation according to the inflection paradigms.

2. Train a Morfessor segmentation model in an semi-
supervised way [11] from the Basque corpus we want
to segment and the words segmented in the previous
step.

3. Segment homograph words by choosing the segmen-
tation with the highest likelihood according to the pre-
vious model.

4. Segment unknown words by choosing the segmenta-
tion with highest likelihood according to the model
among those that can be generated by using solely suf-
fixes from the inflection paradigms in the morphologi-
cal dictionary/spell checker.

This approach hence allows us to segment a corpus in
atomic units of meaning using a spell checker as the only
linguistic resource. Unlike other approaches to NMT train-
ing corpus word segmentation based on linguistic informa-
tion [2, 3], this approach does not require neither a full
morphological analyzer with part-of-speech/morphological
tags nor a part-of-speech tagger/parser for disambiguat-
ing between the different analyses of each word. Part-of-
speech/morphological information (e.g. the fact the suffix
-ed represents the past tense of a verb) is not used during the
process and disambiguation is carried out by the Morfessor
model which, in turn, controls the growth of vocabulary size.

In our submission, we used the Basque spell checker
Xuxen v5.1 as dictionary.9 Moreover, following [8], we
applied BPE splitting with a model learned on the con-
catenation of all training corpora after performing the
pseudo-morphological segmentation. Note that applying
BPE to further split the word pieces obtained after pseudo-
morphological segmentation helps the system to translate
proper nouns and compounds in Basque.

3.2. Evaluation

We evaluated the pseudo-morphological segmentation ap-
proach we employed in our submission and compared it with
two baselines: a greedy alternative in which the segmen-
tation with the most frequent stem is chosen for unknown

9https://xuxen.eus

Table 4: Results of the evaluation of the pseudo-
morphological segmentation approach proposed, a greedy
alternative, and plain BPE.

Segmentation strategy BLEU TER
BPE 12.75 83.68
Paradigms/Greedy+BPE 13.28 87.80
Pseudo-morph+BPE 13.59 79.73

and homograph words, and plain BPE splitting. In all cases,
BPE was applied to all the languages of the training corpus
(65 000 operations) and the model was learned from their
concatenation after carrying out pseudo-morphological seg-
mentation (except for the plain BPE system, for which mor-
phological segmentation was not carried out).

We trained multilingual NMT systems as described in
Section 4 on parallel corpora segmented following the three
strategies. The three multilingual NMT systems were
trained on the in-domain data and included the language
pairs Spanish–English, French–English, Basque–English,
Basque–French and Basque–Spanish.

The evaluation was carried out only on the Basque-to-
English direction. The values of the translation evalua-
tion metrics BLEU [12] and TER [13] computed on the
development set are reported in Table 4. We can ob-
serve that our pseudo-morphological segmentation approach
(Pseudo-morph+BPE) outperforms both plain BPE seg-
mentation and segmentation based on paradigms with a
greedy strategy for homograph and unknown words.

Table 5 shows several examples of words segmented by
the three alternatives evaluated. Furthermore, Table 6 depicts
three Basque sentences from the development set, how they
were segmented by the three alternatives evaluated and their
translation with the NMT systems built. Note that, unlike the
words in Table 5, the SL sentences in Table 6 were split with
BPE after applying the splitting strategies based on inflection
paradigms, as described previously in this section. In the first
example, the Basque word konpartimentutan is formed by
the stem konpartimentu, which means “compartment”, plus
the inessive suffix -tan). The segmentation strategies based
on inflection paradigms are able to correctly detach the ines-
sive suffix from the word, while the pure BPE approach fails
to do it. As a consequence, the MT system built using the lat-
ter approach is not able to produce an adequate translation by
taking advantage of the sentences in the training corpus that
contain words starting with konparti-. Similarly, in the sec-
ond example, the segmentation strategies based on inflection
paradigms are able to segment estudioa into the stem estudio
(that means “studio apartment”) and the suffix -a (singular
article). The pure BPE approach segments it into estudi- and
-oa. Since estudi- is the stem of the verb “to study” in Span-
ish, the multilingual system wrongly generates that verb in
the translation into English. Finally, in the third example,
the greedy approach based on paradigms wrongly segments
Asia into as and -ia, which prevents the NMT system from
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Table 5: Examples of Basque words segmented by the three approaches evaluated. The segmentation that best splits the word in
atomic units of meaning is shown in bold.

Word BPE Paradigms/Greedy Pseudo-morph meaning

adierazitako adierazitako adieraz itako adierazi tako “expressed”, built from adierazi (“to express”)
plus -tako (suffix used in relative clauses)

izendatu izendatu izenda tu izendatu “nominate”, atomic unit
ebaluaketa ebalu aketa ebaluaket a ebaluaketa “evaluation”, atomic unit
birgaitzeko bir gaitzeko birgaitze ko birgaitze ko “rehabilitation” (birgaitze) plus genitive suffix (-ko)

producing the word Asia in English.

4. Training strategy
Our submission is based on cross-lingual learning. We aimed
at improving the translation performance on the Basque-to-
English language pair by means of the addition of train-
ing data from other language pairs. The different language
pairs were combined by means of a multilingual NMT ap-
proach [1]. A TL marker was prepended to each SL segment.
See Section 5 for more details about language pairs included
and how the data for each of them was obtained.

Our submitted NMT system follows the Transformer ar-
chitecture [14]. In particular, we used the implementation in
the Marian NMT toolkit [15]. We generally used the hyper-
parameters of the Transformer base model [14], with the ex-
ception of warmup steps, which was set to 16 000 instead of
4 000. This parameter was increased because our minibatch
size was significantly smaller than that used in the original
paper [14]. We limited segment length to 100 tokens and let
the Marian toolkit set the batch size to fit 8 000 MiB of GPU
memory. For a vocabulary size of around 70 000 words, the
number of TL words in a minibatch was around 3 000, while
[14] report 25 000 TL words per minibatch. A checkpoint
was saved every 5 000 updates.

We used only the publicly released Basque–English
IWSLT18.TED.dev2018 corpus as a development set.10

Training ended when perplexity on the development set did
not improve in 10 consecutive checkpoints. We selected the
checkpoint that obtained the highest BLEU score on the de-
velopment set.

Concerning corpora preprocessing, text was tokenized
with the aggressive strategy11 implemented by the Open-
NMT tokenizer [16]. Words were split in sub-word units as
described in Section 3. The Morfessor model was trained
on the concatenation of the Basque section of the training
data for all language pairs that contained Basque. The BPE
model (65 000 operations), which shared by all SLs and TLs,
was learned from the concatenation of the morphologically
segmented Basque data and the unsegmented data for the re-

10It could be interesting to study whether using development data from
other language pairs has a significant impact in translation quality for
Basque–English.

11The only multi-character tokens allowed are sequences of strictly alpha-
betical characters.

maining languages and it was used to split these corpora.
Text was lowercased prior to training and the resulting En-
glish translations were recased12 with a recasing model esti-
mated from the concatenation of the English side of the train-
ing corpora.

5. Training data
This section describes the training data from which our sub-
mission was built and the experiments carried out to select
it.

5.1. Language pairs

According to the experiments carried out by [1], includ-
ing new language pairs that share either the SL or the
TL with the language pair of interest helps to increase
the translation quality for that language pair. Henceforth,
our multilingual system contains only language pairs with
Basque as SL or English as TL. Moreover, we included
only language pairs for which the training set is published
as part of this year’s data. Hence, our multilingual system
contains data from the Spanish–English, French–English,
Basque–English, Basque–French and Basque–Spanish lan-
guage pairs. Preliminary experiments showed no impor-
tant gains when adding data from the German–English and
Turkish–English language pairs to the training collection.
Conducting more exhaustive experiments has been left as fu-
ture work.

5.2. Cross-entropy data selection and oversampling

As shown in Table 3, there is a huge amount of out-of-
domain parallel data available for the Spanish–English and
French–English language pairs. If it was just concatenated
to the in-domain data, the system would be biased towards
the out-of-domain data. In order to avoid that issue, we se-
lected only a subset of the out-of-domain data which is sim-
ilar to the in-domain one (from now on, pseudo in-domain
data) via cross-entropy difference [17].

The process was carried out as follows. Firstly, we sorted
the out-of-domain data (after cleaning it as described in Sec-
tion 2) by monolingual cross-entropy difference on the En-
glish side. The in-domain language model was estimated

12The Moses recaser was used: http://www.statmt.org/
moses/?n=Moses.SupportTools#ntoc10.
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Table 6: Result of applying each of the three segmentation strategies evaluated in Section 3 to a three sentences extracted from
the development set. The translation of each sentence with a multilingual NMT system trained only on the in-domain data is also
depicted. The character → at the end of a token implies that it is a sub-word unit originally attached to the token that follows it.
Words whose segmentation has a visible impact on the translation are shown in bold.

# segmentation strategy sentence

1

source – BPE burmu→ ina ez dago kon→ parti→ men→ tutan ban→ atuta .
source – Paradigms/Greedy+BPE bur→ mu→ in→ a ez dago kon→ parti→ mentu→ tan bana→ tuta .
source – Pseudo-morph+BPE bur→ mu→ in→ a ez dago kon→ parti→ mentu→ tan bana→ tuta .
translation – BPE There’s no brain at all based on bias.
translation – Paradigms/Greedy+BPE You don’t have a brain that’s broken up into blocks.
translation – Pseudo-morph+BPE There’s no boundary in the brain.
reference The brain isn’t divided into compartments.

2

source – BPE beraz urte batez estudi→ oa ix→ tea erabaki nuen .
source-Paradigms/Greedy+BPE bera→ z urte bat→ ez estudio→ a ix→ te→ a erabaki nu→ en .
source – Pseudo-morph+BPE beraz urte bat→ ez estudio→ a ix→ te→ a erabaki nuen .
translation – BPE So I decided to study for a year.
translation – Paradigms/Greedy+BPE So one year I decided to give it a try.
translation – Pseudo-morph+BPE So I decided to stay silent for a year.
reference So I decided to close it down for one year.

3

source – BPE beraz asia aukeratu nuen .
source – Paradigms/Greedy+BPE bera→ z as→ ia aukera→ tu nu→ en .
source – Pseudo-morph+BPE beraz asia aukeratu nuen .
translation – BPE So I chose Asia.
translation – Paradigms/Greedy+BPE So I decided to give it a try.
translation – Pseudo-morph+BPE So I chose Asia.
reference So Asia it was.

from the English side of the parallel in-domain Spanish–
English training corpus, while the out-of-domain one was
obtained from a random sample with the same number of
segments from the English side of all the available Spanish–
English parallel data. The same language models were used
for computing monolingual cross-entropy difference for both
the Spanish–English and French–English language pairs. As
other authors did previously [18], we split English corpora
with BPE prior to training the language models and scoring
the out-of-domain parallel segments.

Secondly, we carried out a set of experiments in order
to decide which is the most appropriate amount of pseudo
in-domain data for Spanish–English and French–English. In
these experiments, we used all the available data for Basque–
English, Basque–Spanish and Basque–French, and varying
amounts of pseudo in-domain data, which was concatenated
to the real in-domain data, for Spanish–English and French–
English. In addition, we also studied the effect of oversam-
pling the Basque–English data (concatenation of in-domain
and out-of-domain) to match the size of the Spanish–English
and French–English data.

Table 7 depicts the size of the pseudo in-domain parallel
data13 and the size of the Basque–English data included in
the training set for the different configurations evaluated, to-

13For a given size N , the N parallel segments with the lowest cross-
entropy score are selected from the out of domain data.

gether with the values of the evaluation metrics BLEU [12]
and TER [13] computed on the development set. The orig-
inal size of the Basque–English data is 933 356 segments.
Those rows with values higher than 0.9M imply that the data
the Basque–English has been oversampled. In other words,
it has been included as many times as necessary for reaching
the size depicted in the table. Systems were trained following
the set-up described in Section 4. For the same data config-
urations, Table 8 shows automatic evaluation metrics com-
puted after finetuning the systems on the in-domain data.14

Results show no important gains when increasing the out-of-
domain data size from 2M to 5M and confirm the importance
of oversampling, in line with the results reported in [1]. Fine-
tuning on in-domain data did not bring any positive impact.
One possible reason could be the scarce amount of in-domain
Basque–English data available (see Table 1). We chose the
configuration with the highest BLEU score on the develop-
ment set (depicted in bold in Table 7) for our submission.

5.3. Backtranslation

Backtranslation, that is, the translation of additional TL
monolingual data into the SL with an MT system in order to
obtain additional training material, is a widespread method
to enhance the quality of NMT systems [19].

14When finetuning, the initial learning rate was set to the value employed
in the last update of the main training process.
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Table 7: Results of the experiments carried out in order to
determine the best size for pseudo in-domain data and for
Basque–English data (with oversampling). Unlike the exper-
iments depicted in Table 8, these experiments did not include
finetuning on the in-domain data at the end of the training
process. The configuration highlighted in bold is the one
used in our submission.

Pseudo in-domain size eu-en size BLEU TER
2M 0.9M 21.05 68.15
2M 2M 21.72 68.65
5M 0.9M 19.47 71.86
5M 3M 20.46 70.17
5M 5M 21.10 68.95

Table 8: Results of the experiments carried out in order to
determine the best size for pseudo in-domain data and for
Basque–English data (with oversampling). Unlike the ex-
periments depicted in Table 7, these experiments included
finetuning on the in-domain data at the end of the training
process.

Pseudo in-domain size eu-en size BLEU TER
2M 0.9M 21.15 69.11
2M 2M 21.68 68.46
5M 0.9M 19.96 71.20
5M 3M 20.88 71.46
5M 5M 21.68 69.38

In our submission, we did not directly translate monolin-
gual English data into Basque. Since there is high-quality
Basque–Spanish parallel data not available for Basque–
English (Open Data Euskadi Repository) we opted for trans-
lating the Spanish side of Spanish–English parallel data into
Basque in order to build additional Basque–English train-
ing material. A similar approach has been successfully ap-
plied for enhancing phrase-based statistical machine transla-
tion systems [20].

In order to carry out the backtranslation, we trained an
NMT system on all the available Spanish–Basque data with
the set-up described in Section 4. Words were segmented
as described in Section 3. That system was used to back-
translate the Spanish side of the in-domain Spanish–English
training data and the top 5M segments15 from the pseudo in-
domain Spanish–English corpus.

We evaluated the impact of adding backtranslated data
to the best dataset from the previous section (2M pseudo in-
domain parallel segments, oversampling and no finetuning).
We built NMT systems after adding the full backtranslated
data (both the in-domain and the pseudo-in-domain data; row
labeled as 5.2M), and after adding the in-domain and only
2M pseudo-in-domain backtranslated segments (row labeled

15We could not backtranslate a larger amount of data because of time
restrictions.

Table 9: Results of the experiments carried out in order to
determine the best size for backtranslated data. The configu-
ration highlighted in bold is the one used in our submission.

Size of backtranslated data BLEU TER
0 21.72 68.65
2.2M 22.51 67.54
5.2M 23.45 66.94

as 2.2M). Results of the evaluation on the development set
of the NMT systems trained with these data are depicted in
Table 9. They show that using the whole backtranslated data
has a strong positive impact on the quality of the resulting
MT system. Hence, we used the 5.2M backtranslated seg-
ments in our submission.

5.4. Final submission

Our final submission was trained on the best data collection
from previous section. We experimented with finetuning and
checkpoint ensembling [21, Sec. 3.2], but translation quality
did not improve. Hence, we submitted just the result of trans-
lating the test set with the intermediate model that achieved
the highest BLEU score on the development set.

6. Related approaches
Our submission is built with the help of morphological seg-
mentation, cross-entropy data selection and cross-lingual
learning via multilingual NMT. This section reviews the most
relevant approaches in these three fields.

Morphological segmentation has been successfully ap-
plied to build a winning system [2] for the English–Finnish
language pair in the WMT 2016 news translation shared
task [22]. Simpler alternatives based on lists of pre-
fixes/suffixes have also been reported to bring improvements
in translation quality [8]. Morphological segmentation has
already been applied to NMT for Basque [23]. However, un-
like our approach, their strategy segments homograph words
in a greedy way (longest stem). Besides morphological seg-
mentation, there are other ways linguistic resources can be
used to segment words for NMT training. For instance, TL
words can be transformed into a sequence of stem and mor-
phological inflection tags in order to achieve better morpho-
logical generalization when translating into highly inflected
languages [3].

Cross-entropy data selection [17] has become a popular
approach for leveraging out-of-domain data when building
MT systems. This strategy has been used for collecting train-
ing data for phrase-based statistical machine translation sys-
tems [24] and NMT systems [18] in shared translation tasks
such as WMT [6] and IWSLT [25].

In multilingual NMT [1], a single NMT model is used
to translate between different language pairs. Some authors
proposed multilingual NMT strategies in which the underly-
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ing network architecture does not need to be modified [1, 26].
That property allowed us to perform multilingual MT with a
Transformer [14] model despite the fact that the multilingual
NMT approach we followed [1] was originally addressed to
the encoder-decoder with attention architecture [27]. On the
contrary, other authors [28] proposed modifying the network
architecture to use an independent encoder and decoder for
each language.

7. Concluding remarks
This paper presented Prompsit Language Engineering’s sub-
mission to the IWSLT 2018 Low Resource MT track. We
presented a novel method for morphological segmentation
based solely on a dictionary with inflection paradigms such
as those used by spell checkers and proved that it out-
performs the widespread BPE segmentation method. Our
submission relies on cross-lingual learning via multilingual
NMT. Basque training data was segmented with the novel
method. The NMT system follows the Transformer archi-
tecture. We experimented with varying amounts of pseudo
in-domain data obtained via cross-entropy data selection and
with varying amounts of backtranslated data and submitted
the combination that maximized translation quality on the
development set.

Our submission could be further improved with indepen-
dent ensembles [21, Sec. 3.2]. The inclusion of additional
language pairs has not been exhaustively evaluated and the
quality of the final system might be improved by adding
some more language pairs. The quality of the final system
could also improve with the addition of more backtranslated
data.
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Abstract
This work describes AppTek’s speech translation pipeline
that includes strong state-of-the-art automatic speech recog-
nition (ASR) and neural machine translation (NMT) com-
ponents. We show how these components can be tightly
coupled by encoding ASR confusion networks, as well as
ASR-like noise adaptation, vocabulary normalization, and
implicit punctuation prediction during translation. In another
experimental setup, we propose a direct speech translation
approach that can be scaled to translation tasks with large
amounts of text-only parallel training data but a limited num-
ber of hours of recorded and human-translated speech.

1. Introduction
AppTek participated in the evaluation campaign of the
International Workshop on Spoken Language Translation
(IWSLT) 2018 with the goal of obtaining best possible
speech translation quality by streamlining the interface be-
tween ASR and machine translation (MT). We tested a new
way of encoding multiple hypotheses of ASR as input to an
NMT system. We also experimented with a novel direct neu-
ral translation model that translates source language speech
into target language text, while at the same time benefiting
from text-only parallel training data in a multi-task learning
framework. To make these experiments possible, we made
sure that our NMT system can handle different types of input,
and its source language vocabulary is harmonized w.r.t. the
ASR system vocabulary. We also fine-tuned the NMT model
on ASR-like noise, making it more robust against recognition
errors. Finally, we tested different punctuation prediction ap-
proaches and found that the implicit prediction of punctua-
tion marks by the MT component works best in our setting.

Although improving our state-of-the-art NMT model was
not our main focus, we benefited from fine-tuning the model
on the in-domain data, as well as from ensembles of mod-
els which differ in architecture – recurrent neural network
(RNN) model with attention [1] or transformer architec-
ture [2] – and/or input modality – ASR confusion network
(CN) or first-best ASR output. This paper is organized as
follows. We start by reviewing related work in 2, point-
ing out some differences and novelties in our approach. In
Section 3, we describe our methods for data filtering, pre-

processing, and punctuation prediction. Section 4 gives an
overview of our ASR system. Section 5 describes the details
of AppTek’s NMT system. Section 6 gives details of how
ASR confusion networks can be encoded as an input of the
NMT system. In Section 7, we describe our direct speech
translation prototype. The results of our speech translation
experiments are summarized in Section 8.

2. Related Work
Theoretical background for tighter coupling of statistical
ASR and MT systems had been first published in [3]. In prac-
tice, it was realized e. g. as statistical phrase-based transla-
tion of ASR word lattices with acoustic and language model
scores [4] or confusion networks with posterior probabili-
ties [5]. In both cases moderate improvements of translation
quality were reported when the ASR scores were included
in the log-linear model combination; the improvements were
larger when the baseline recognition quality was low.

In the first publication on word lattice translation using
a neural model [6], the proposed lattice-to-sequence model
had an encoder component with one hidden state for each
lattice node, as well as attention over all lattice nodes. This
is a different and more computationally expensive model as
compared to what we propose in this work. In our encoder,
the number of hidden states is the same as the number of slots
in the input confusion network, which is usually only slightly
higher than the number of words in the utterance.

Adapting the NMT system to ASR-like noise was pro-
posed by [7]. We follow the same strategy, but the noise that
we introduce is not random; it is sampled from a distribution
of most common ASR errors based on statistics from recog-
nizing the audio of the TED dataset.

Direct translation of foreign speech was proposed by [8],
who used a character-level sequence-to-sequence model1.
They report experimental results on a small (163 hours
of speech with transcriptions and translations) Spanish-to-
English Fisher and Callhome dataset. The authors use multi-
task learning with a single speech encoder and two decoders,
one for English (direct translation) and one for Spanish,
which allows them to incorporate supervision from Spanish

1A later work by [9] extends the approach of [8] to word-level models.

104

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018



transcripts. In contrast, we follow the opposite approach, in
which we have a single target language decoder and two sep-
arate encoders, one for source language speech, and one for
source language text. This approach allows us to benefit from
large quantities of text-only parallel MT training data, in a
multi-task learning scenario, and thus, in contrast to previ-
ous work, to potentially compete with the standard approach
that uses strong, but separate components for ASR and MT.

Punctuation prediction in MT (and especially neural MT)
context was investigated in comparative experiments in [10].
Similarly to that paper, we also confirmed experimentally
that implicit prediction of punctuation marks by the NMT
system resulted in the best BLEU and TER scores in our set-
ting (see Section 3.3 for details).

3. Data Preparation
3.1. Parallel Data Filtering

In line with the evaluation specifications, we used the TED
corpus, the OpenSubtitles2018 corpus [11], as well as the
data provided by the WMT 2018 evaluation (Europarl,
ParaCrawl, CommonCrawl, News Commentary, and Rapid)
as the potential training data for our NMT system, amount-
ing to 65M lines of parallel sentence-aligned text. We then
filtered these data based on several heuristics, with the two
most important ones described next.

Since especially the crawled corpora are very noisy, they
often contain segments in a wrong language, or even things
like programming code and XML markup. We used the
CLD2 library2 for sentence-level language identification to
keep only those sentence pairs in which the source sentence
was labeled as English and target sentence as German with
the confidence of at least 90%.

Another heuristic was based on sentence length: we only
kept sentences with at least 3 and at most 80 words (after to-
kenization). We also removed sentence pairs in which source
and target sentence lengths differ by a factor of 5 or more.

Overall the filtering yielded a corpus of 37.6M lines and
556M words (on the English side, counted untokenized),
which we used in all of the experiments presented in this
paper. It included 256K unique lines of TED talks with 4.4M
words on the English side.

3.2. Preprocessing

We used two types of preprocessing. The first one was the
standard Moses tokenization [12] for text translation and
lowercasing on the English side. The German side was true-
cased using a frequency-based method. The second prepro-
cessing was used only for English with the goal of converting
text into speech transcript similar to the one produced by the
ASR system. Starting from the Moses tokenization, we re-
moved all punctuation marks and spliced back contractions
(e. g. do n’t → don’t) to match the corresponding to-

2https://github.com/CLD2Owners/cld2

kens in the ASR lexicon. We also converted numbers written
with digits to their spoken form using a tool based on the
num2words3 python library.

The final step for both types of preprocessing was
segmentation into sub-word units with byte pair encoding
(BPE) [13], separately for each language. We used 20K
merging operations. During testing, we used the option to
revert BPE merge operations resulting in tokens that were
observed less than 50 times in the segmented training data.

3.3. Punctuation Prediction

To translate a speech transcript with an NMT system trained
with the first, standard preprocessing described above, we
need to automatically enrich it with punctuation marks. To
this end, we trained a RNN for punctuation restoration simi-
lar to the one presented in [14]. Only the words in a sentence
are used to predict punctuation marks (period, comma, and
question mark only). The acoustic features are not used.

For the setup with the ASR-like preprocessing of En-
glish, punctuation prediction is done implicitly during trans-
lation, since the target side of the training corpus contains
punctuation marks. Thus, the output of the ASR system can
be directly used (after BPE) as input to the NMT system.

4. ASR system
The ASR system is based on a hybrid LSTM/HMM acous-
tic model [15, 16], trained on a total of approx. 390 hours
of transcribed speech from the TED-LIUM corpus (exclud-
ing the black-listed talks) and the IWSLT Speech-Translation
TED corpus4. We used the pronunciation lexicon provided
with the TED-LIUM corpus. The acoustic model takes 80-
dim. MFCC features as input and estimates state posterior
probabilities for 5000 tied triphone states. It consists of 4 bi-
directional layers with 512 LSTM units for each direction.
Frame-level alignment and state tying were obtained from
a bootstrap model based on a Gaussian mixtures acoustic
model. We trained the neural network for 100 epochs by min-
imizing the cross-entropy using the Adam update rule [17]
with Nesterov momentum and reducing the learning rate fol-
lowing a variant of the Newbob scheme.

The language model for the single-pass HMM decod-
ing is a simple 4-gram count model trained with Kneser-
Ney smoothing on all allowed English text data (ap-
prox. 2.8B running words). The vocabulary consists of the
same 152k words from the training lexicon and the out-
of-vocabulary rate is 0.2% on TED.dev2010 and 0.5%
on TED.tst2015. The LM has a perplexity of 133 on

3https://github.com/savoirfairelinux/num2words
4We realized that the provided audio-to-source-sentence alignments of

the TED talks were often not correct. As this could significantly degrade the
performance of the audio encoder for the direct speech translation approach
described in Section 7, we had to automatically recompute these alignments
by force-aligning each TED recording to its corresponding source sentences,
and applied heuristics to overcome the problem of transcription gaps (speech
segments without a translation in the parallel data).
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TED.dev2010 and 122 on TED.tst2015.
Since TED talks are a relatively simple ASR task, we

decided not to proceed with sequence training of the acous-
tic model or LM rescoring with LSTM models in order to
have more uncertainty in the lattices. Acoustic training of
the baseline model and the HMM decoding were performed
with the RWTH ASR toolkit [18]. We trained BLSTM mod-
els with RETURNN [19], which integrates into RWTH ASR
as an external acoustic model for decoding. Prior to con-
structing CNs from lattices [20], we decomposed the words
into individual arcs according to the BPE scheme described
in Section 3.2. The construction algorithm uses arcs from the
first-best path as pivot elements to initialize arc clusters [21].

5. Neural Machine Translation System
We used the RETURNN toolkit [22] based on TensorFlow
[23] for all NMT experiments. We trained two different ar-
chitectures of NMT models: an attention-based RNN model
similar to [1] with additive attention and a Transformer
model [2] with multi-head attention.

In the RNN-based attention model, both the source and
the target words are projected into a 620-dimensional em-
bedding space. The models are equipped with either 4 or 6
layers of bidirectional encoder using LSTM cells with 1000
units. A unidirectional decoder with the same number of
units was used in all cases. We applied a layer-wise pre-
training scheme that lead to both better convergence and
faster training speed during the initial pre-train epochs [22].
We also augmented our attention computations using fertility
feedback similar to [24, 25].

In the Transformer model, both the self-attentive en-
coder and the decoder consist of 6 stacked layers. Every
layer is composed of two sub-layers: a 8-head self-attention
layer followed by a rectified linear unit (ReLU). We ap-
plied layer normalization [26] before each sub-layer, whereas
dropout [27] and residual connection [28] were applied after-
wards. Our model is very similar to “base” Transformer of
the original paper [2], such that all projection layers and the
multi-head attention layers consist of 512 nodes followed by
a feedforward layer equipped with 2048 nodes.

We trained all models using the Adam optimizer [17]
with a learning rate of 0.001 for the attention RNN-based
model and 0.0003 for the Transformer model. We applied a
learning rate scheduling similar to the Newbob scheme based
on the perplexity on the validation set for a few consecutive
evaluation checkpoints. We also employed label smoothing
of 0.1 [29] for all trainings. The dropout rate ranged from
0.1 to 0.3.

6. Translation of ASR Confusion Networks
To encode confusion networks as input to the NMT system,
we propose a novel, simple scheme. For a given speech utter-
ance represented by acoustic vectors o, we treat a confusion
network C with J slots as the source sentence for the NMT.

Instead of the one-hot encoding x j ∈ {0,1}K (where K is the
source vocabulary size) at position j within the sentence, the
input is encoded as a K-dimensional vector x̄ j ∈ RK with
x̄k

j := p j(wk|o),k = 1, . . . ,K. Here, wk is the k-th word in
the vocabulary, and p j(wk|o) is the posterior probability of
the word wk to appear at position j in C. In practice, p j(wk)
is different from 0 only for a small number of words.

In the end, following the notation of [1], we represent the
input to the RNN encoder as the vector Ex̄ j where E ∈RN×K

is the word embedding matrix and N is the dimension of the
word embedding (e. g. 620). Thus, Ex̄ j is a weighted combi-
nation of word embeddings for all the words in the CN slot
j, with the highest weight given to the word with the highest
posterior probability. In the corner case of only one arc per
slot with the posterior probability of 1.0, we obtain a single
word sequence. Thus, we can still use normal sentence pairs
(e.g. from text-only parallel data) for training, along with the
pairs of source CNs and their target language translations.
The new input representation Ex̄ j has the same dimensions
as Ex j and thus can be directly used to train a standard RNN
NMT model or any other model that uses word embeddings.
We kept the posterior weights fixed during back-propagation.

Word sequences of different length can be obtained from
a CN because epsilon arcs can be inserted as alternatives
in some of the slots. The best solution when training an
NMT system on CNs would be to add an artificial source
language token EPS that would not appear in the original
text-only training data. However, because we decided against
re-training the system on CN input from scratch, we mapped
all epsilon arcs to the English word “eh”, which denotes hes-
itation. It appears often enough in the English side of the
parallel text-only corpus, but is almost always omitted in the
human translation into German.

We also used CNs to simulate ASR word errors in text
data. Following the work of [7], we used such noisy data
in the training of the NMT system to make it more robust
against similar real ASR word errors. To this end, for each
word w in the first-best ASR output for the TED training cor-
pus, we collected all the slot alternatives w′

n, n = 1, . . . ,Nw to
this word in the corresponding ASR CNs with their averaged
posterior probabilities. After re-normalization of these prob-
abilities, for each word w we obtained a confusion probabil-
ity distribution pw. Then, in a given sentence, we replaced
every occurrence of the word w by one of its alternatives w′

n
with probability pw(w′

n) from this distribution. One of the
alternatives can also be an epsilon arc, we keep them (con-
verted to “eh” as described above) to adapt the NMT system
to epsilon arcs in CN input, inserting up to 2 consecutive arcs
after each word with a probability e.

Finally, we used two control parameters to limit the noise
level: probability to change a word p and probability to
change anything at all in a given sentence s. Experimentally,
we determined the settings e = 0.02, p = 0.25,s = 0.6 which
resulted in WER of the noisy text as compared to its original
text that was similar to the WER of the baseline ASR system.
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Table 1: Results measured in BLEU [%] and TER [%] for the individual systems for the English→German speech translation
task, translation of correct transcript vs. first-best ASR output of the TED.tst2015 set.

correct transcript ASR output (WER of 10.9%)
# System BLEU TER BLEU TER

0 RWTH IWSLT 2017 best non-ensemble system 30.5 52.3 – –
1 text translation baseline (RNN) 32.4 50.5 25.2 60.2
2 text translation baseline (Transformer) 33.0 50.5 26.3 58.7
3 speech translation baseline (RNN) 31.4 51.9 26.6 60.0
4 speech translation baseline (Transformer) 30.7 52.8 25.8 59.5

7. Direct Speech Translation

In the direct approach to speech translation, a single neural
network is used to predict the target translation given the au-
dio features of the source sentence. The amount of training
data for this setting, i.e. audio with the corresponding ref-
erence translations pairs from the TED corpus, is compara-
tively low. To exploit the much larger parallel text corpora,
we choose a multi-task setup in which the network simulta-
neously learns to translate either from source audio or from
source text. For this, we extend the RNN-based attention
model described in Section 5 with an additional audio en-
coder that takes MFCC features as input. It consists of 5 bi-
directional LSTM layers with 512 units each. Max-pooling
layers with a pool size of 2 are inserted after each of the first 3
LSTM layers, reducing the sequence length by a factor of 8.
Also, a separate attention mechanism is added for the audio
encoder. The decoder switches between the context vector
from the text encoder ci,text and the one from the audio en-
coder ci,audio depending on which input is given (using nota-
tion from [1]). The remaining part of the decoder is shared
between both tasks.

To ensure that both types of input are seen frequently
enough during training, we duplicate the speech translation
corpus so that it grows to 30% the size of the parallel text
corpus (66 duplicates). The concatenation of text and audio
examples is then traversed in random order. For the direct
system, the same optimization and regularization techniques
are applied as in the NMT system described in Section 5.

8. Experimental Evaluation

We participated in the speech translation task of the
IWSLT 2018 evaluation, the translation direction was
English→German. All NMT models are trained on the fil-
tered bilingual data as described in Section 3.1, no mono-
lingual data was used. For the fine-tuning experiments, we
used the TED talk part of the bilingual data together with
the test sets TED.tst2010,2013,2014 (which were not
used for tuning or evaluation). The TED talk part was also
included in the baseline system. For the experiments with
the confusion networks, we ran the ASR system to recognize
the speech of the 170K TED training set and the test sets
TED.tst2010,2013,2014 and used the resulting CNs

with the corresponding German translations as (additional)
training data.

We shuffled the training samples before each epoch and
removed sentences longer than 75 and 100 sub-words in
the attention RNN-based and the Transformer setup, respec-
tively. We evaluate our models almost every 10K iterations
and select the best checkpoint based on perplexity on the val-
idation set. NMT decoding is performed using beam search
with a beam size of 12 and the scores are normalized w.r.t the
length of the hypotheses. We used TED.dev2010 consist-
ing of 888 sentences as our validation set and evaluated our
models on TED.tst2015 test set with 1080 segments. The
systems were evaluated using case-sensitive BLEU [30] and
normalized case-sensitive TER [31].

8.1. Baselines

First we trained a model with standard preprocessing for
written text described in Section 3.2 and evaluated its qual-
ity on the correct transcript with punctuation marks of the
TED.tst2015 set, as shown in Table 1. We observed a
slightly better BLEU score for the Transformer architecture
(line 2) as compared to the recurrent architecture (line 1). We
also made a comparison to the best single system of RWTH
Aachen University on this set from the IWSLT 2017 evalua-
tion. With our baseline system we improved upon that result
by 1.9% to 2.5% absolute.

We then trained a model with speech-like preprocessing
of the English side of the parallel corpus as described in Sec-
tion 3.2. This model not only translates English words to
German, but also predicts punctuation marks. To match this
condition, we applied the same preprocessing to the correct
English transcript of TED.tst2015, removing the punc-
tuation marks. The evaluation included punctuation marks.
Because of the dual task (translation and punctuation predic-
tion), the MT quality is lower, but only by 1% BLEU (line 3
of Table 1). Here, the recurrent architecture outperforms the
transformer architecture (line 4) by a significant margin. Be-
cause of this, most of our subsequent experiments were based
on the recurrent model.

8.2. Effects of ASR errors and Punctuation Prediction

When we translate the first-best ASR output for
TED.tst2015, which has an ASR word error rate of
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Table 2: Results measured in BLEU [%] and TER [%] for the individual systems for the English→German speech translation
task, translation of ASR output.

TED.dev2010 TED.tst2015 tst2018
# System BLEU TER BLEU TER BLEU TER

1 speech translation baseline (RNN) 26.5 55.2 26.6 60.0 – –
2 + fine-tuning on TED corpus 27.1 54.2 27.5 57.5 – –
3 + 2 additional encoder layers 27.3 54.7 27.6 57.5 – –
4 + fine-tuning on TED with noise 27.1 54.1 28.0 56.5 21.1 64.1
5 fine-tuning of 1) on TED CNs only 26.6 55.7 26.9 58.3 – –
6 fine-tuning of 1) on TED correct + CNs 26.6 55.5 27.0 58.5 20.3 66.5
7 fine-tuning of 1) on TED correct+noise + CNs 26.2 55.9 27.0 57.9 20.2 66.7
8 speech translation baseline (Transformer) 26.1 55.6 25.8 59.5 – –
9 + fine-tuning on TED corpus 27.0 54.4 27.0 57.7 – –
10 Ensemble of 2, 3, 4, 9 27.9 53.7 28.3 56.7 21.4 64.2
11 Ensemble of 2, 3, 4, 6 27.3 55.6 28.0 58.1 21.2 64.4
12 Ensemble of 2, 3, 4, 5, 6, 7 27.5 54.2 28.3 56.7 21.5 64.1

10.9%, we observe a significant degradation of MT quality.
For example, the BLEU score goes down from 31.4% to
26.6%, cf. line 3 of Table 1. This means that the NMT
system is sensitive to ASR errors. Otherwise, the differences
between architectures are similar when compared on the
ASR first-best output as opposed to correct transcript.

8.3. Confusion Network Translation

For the subsequent experiments, we start with the RNN
speech translation baseline. Table 2 presents the results on
the ASR output for the TED.dev2010 validation set and
TED.tst2015 test set. For the lines where confusion net-
works are mentioned, they were used as input to the NMT
system as described in Section 6. The CNs were pruned
based on the threshold of 0.0001 for the posterior probability;
a maximum of 20 arcs per slot with highest probability were
kept. The average density of the final CNs on the training
and validation sets was 1.8 and 2.2, respectively.

Fine-tuning on the TED corpus (using the correct tran-
script as the English side of the parallel corpus) improves the
result on the test set by 0.9% BLEU absolute, as shown in
line 2 of Table 2. We fine-tuned our models with a small
learning rate of 0.00001 for the Transformer model and the
models using CNs, which is additionally decayed by a factor
ranging from 0.8 to 0.9 after each half an epoch. For the at-
tention RNN-based models which do not use CNs as input,
the learning rate was set to 0.0001 with decay rate of 0.9. We
also tried fine-tuning using a model with 6 encoder layers in-
stead of 4, but have not obtained any further improvements
as compared to the fine-tuned model with 4 encoder layers.

Next, we duplicated the TED parallel corpus and intro-
duced noise into the duplicate. The level of noise was se-
lected to be similar to the ASR word error rate on the devel-
opment set, and the noise itself was created as described in
Section 6. Line 4 of Table 2 shows that after fine-tuning on
both correct and noisy TED corpus, we obtain an improve-
ment of 0.5% BLEU and 1.0% TER when translating the

first-best ASR output for the TED.tst2015 set, as com-
pared to fine-tuning without the noise (line 2). Thus, to some
extent the NMT system was able to learn how to cope with
noise that is based on common ASR errors.

Because we could only run ASR on the 170K sentences
from the TED corpus, for which the speech was well-aligned
with reference translations, we decided to use confusion net-
works for fine-tuning of the NMT system only. To make it
possible, we replaced the original English word embeddings
of the model with the linear combination of the embeddings
of CN slot alternatives, as described in Section 6. The fine-
tuning was done on a random mix of correct TED talk tran-
scripts and ASR CNs for these transcripts at the same time.

Lines 5-7 of Table 2 list the results of three fine-tuning
experiments which include CNs in the source-side training
data. We either continued training of the model on 170K CNs
(and the reference translations of the corresponding tran-
scripts), or on CNs plus correct transcripts of the same set,
or on CNs plus correct transcripts and transcripts with noise
that was inserted as in the experiment in line 4 of Table 2.
In all three cases we used a lower learning rate, a smaller
batch size, and continued fine-tuning for 5-6 epochs. Unfor-
tunately, the BLEU/TER scores go down as compared to the
best result in line 4 when translating first-best ASR output.

Detailed analysis of the NMT output from line 6 (best
result on the validation set) showed that when translating
confusion networks, the model is able to recover from some
recognition errors. For example, the TED.tst2015 ut-
terance you throw the ball but you’re hit right

as you throw is translated by the system in line 4 of
Table 2 as Sie werfen den Ball, aber das ist Ihr

Thron because of the ASR error as you throw → is

your throne. The system that translates the correspond-
ing ASR confusion network, however, is able to produce
a correct translation: Sie werfen den Ball, aber Sie

werden getroffen. In another anecdotal example there is
no error in the first-best ASR output, but the NMT system is
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not able to disambiguate the meaning of the word picking.
The English source is: see over there somebody is

kind of picking their nose. The translation of the
first-best ASR output is: Da drüben, da ist jemand

in der Nase (Over there, someone is in the nose). When
the corresponding CN is translated, the translation preserves
the original meaning: Sehen Sie, da ist jemand,

der sich in die Nase bohrt. We looked at the CN
alternatives for the word picking. It had a posterior prob-
ability of 0.77, and the top competing hypotheses were
taking (0.14), making (0.06), shaking (0.02), sticking
(0.004). The embeddings of these words seem to have helped
the NMT system to correctly infer the meaning of picking
in the given context.

In many cases, however, multiple alternatives, especially
to an empty slot, sometimes confused the system to a point
where translation quality was adversely affected. In a final
contrastive experiment, we used the system from line 7 in
Table 2 to translate not the CNs, but the first-best ASR out-
put for the same test set. The result – BLEU of 28.0% and
TER of 56.5% on TED.tst2015 – was nearly identical to
line 4 in the table and showed that the system was fine-tuned
well to the TED domain, and the noise in the CNs made the
NMT system more robust against the errors which the ASR
system could not avoid to make. However, the system does
not generalize well to unseen CNs and may make errors by
encoding meaning from alternatives to correctly recognized
words, even if their posterior probability is low. Neverthe-
less, we think that the approach is promising and can benefit
from a better training strategy, more CNs in training, and a
better, adaptive weighting of CN alternatives. We plan to im-
plement these improvements in our future work.

8.4. Direct Speech Translation

The direct translation system trained on the 170K segments
of the TED corpus where both the audio files and their trans-
lations are available and well aligned yields a BLEU score of
15.6% when translating the speech of the TED.tst2015
set. For comparison, a standard text-only attention RNN
model trained on the same corpus using the correct English
transcript reaches the BLEU/TER scores of 18.5% on the
first-ASR output for the same set. Although the results are
much worse than for the NMT systems in Table 2 trained on
large amounts of data, we see that the direct system can still
produce results only moderately worse than a system trained
on the same data, but on English text instead of speech.
When we try to improve the direct system by multi-task
learning using all of the text parallel data as described in Sec-
tion 7, we obtain a BLEU score of 17.1% after many days of
training that has not converged, neither until the evaluation
nor paper submission deadline. Thus, although in prelimi-
nary tests multi-task learning seems to work correctly and
bring improvements, the approach requires a faster imple-
mentation and a better training/optimization strategy.

8.5. Final Results

The Transformer model, even when fine-tuned on the TED
corpus, did not result in additional improvements over the
attention based RNN model (lines 8 and 9 of Table 2). How-
ever, it contributed to the ensemble of several systems (line
10). The RNN model that uses CN input can potentially
be ensembled with the Transformer NMT model (using ei-
ther first-best or CN ASR output as input). However, we did
not have time to implement the necessary changes for such
model combination. Therefore, for our primary evaluation
submission we combined only the RNN models which trans-
late either first-best ASR input (models from lines 2, 3, 4 of
Table 2) or confusion networks (models from lines 5-7 of Ta-
ble 2). The BLEU of this ensemble system in line 12 is only
marginally better than of the best single system from line 4.

For the 2018 evaluation data, we first used the acoustic
sentence segmentation of the ASR system. Because it was
too fine-grained and unreliable due to many pauses of the
speakers and could lead to context loss for the NMT sys-
tem, we ran the punctuation prediction algorithm described
in Section 3.3 on the first-best ASR output, but used its re-
sults only to define new segment boundaries at time points
when a period or question mark was predicted after a word.
We then re-ran the recognition to generate first-best and CN
ASR output using the segmentation obtained in this way. The
performance on the 2018 evaluation data is reported in the
last column of Table 2. The BLEU and TER scores were
provided by the organizers for our primary and contrastive
submissions. We observed similar tendencies here as on the
TED.tst2015 set: unfortunately, using ASR confusion
networks as input to NMT results in worse scores (e.g. by
0.8% absolute in BLEU) as compared to the best single sys-
tem translating ASR first-best output. Our primary submis-
sion from line 12 obtains the best results also on the 2018
evaluation set, but the improvement due to ensembling of
multiple systems is not significant.

9. Conclusion

AppTek participated in the speech translation task of the
IWSLT 2018 evaluation, achieving the BLEU score of 21.5%
on the 2018 English to German evaluation data with the pri-
mary submission. Our best setup used an ensemble of atten-
tion RNN MT models which translate either first-best ASR
output or ASR confusion networks, generating target lan-
guage text with punctuation marks. We proposed a novel
scheme for encoding CNs in NMT and showed that the
negative effect of some ASR errors can be reduced when
CNs are translated, although further improvements in train-
ing strategy are necessary to obtain significant improvements
in speech translation quality. Preliminary experiments with
direct speech translation with a single sequence-to-sequence
model showed promising improvements due to a novel multi-
task learning scenario that allows for exploitation of text-only
parallel MT training data.
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Abstract 

This paper describes our speech translation system for the 

IWSLT 2018 Speech Translation of lectures and TED talks 

from English to German task. The pipeline approach is 

employed in our work, which mainly includes the Automatic 

Speech Recognition (ASR) system, a post-processing module, 

and the Neural Machine Translation (NMT) system. Our ASR 

system is an ensemble system of Deep-CNN, BLSTM, TDNN, 

N-gram Language model with lattice rescoring. We report 

average results on tst2013, tst2014, tst2015. Our best 

combination system has an average WER of 6.73. The machine 

translation system is based on Google’s Transformer 

architecture.  We achieved an improvement of 3.6 BLEU over 

baseline system by applying several techniques, such as 

cleaning parallel corpus, fine tuning of single model, ensemble 

models and re-scoring with additional features. Our final 

average result on speech translation is 31.02 BLEU. 

1. Introduction 

We have participated in the Speech Translation of lectures and 

TED talks from English to German task. The goal of this task 

is to translate fully un-segmented talks or lectures from English 

to German. 

A pipeline approach is employed in our work. It consists of 

segmentation of audio data, ASR system, punctuation 

restoration and NMT system. A two pass decoding is used in 

the ASR system. In the first pass, we use several different neural 

network, such as Deep-CNN [1] [2], BLSTM and TDNN [3] to 

generate ensemble results. Then the decoding lattices of the 

ensemble system are sent to a second pass decoder for lattice 

rescoring. In order to bridge the gap between the output of ASR 

system and training data of NMT system, punctuation 

restoration, disfluency detection and inverse text normalization 

are necessary in our pipeline. Our NMT system is based on the 

Transformer architecture [4], which is based solely on attention 

mechanisms. Several techniques are adopted to improve our 

system, such as parallel corpus cleaning, fine tuning, model 

ensembling and re-scoring with additional features. 

The rest of this paper is structured as follows. Section 2 

describes the details of our ASR system, and Section 3 describes 

our NMT system. Our results in the speech translation task are 

presented in Section 4. We conclude this paper in Section 5. 

                                                           
1https://github.com/kaldi-

asr/kaldi/blob/master/egs/ami/s5b/local/run_cleanup _segmentation.sh  

2. Automatic speech recognition 

 

2.1. Audio Segmentation 

In this evaluation, the test set is provided without manual 

sentence segmentation, thus automatic segmentation of the final 

test set is essential. We utilize an approach to automatic 

segment audio data based on the signal energy. We set a 

threshold to split the audio between 8 and 15 seconds and then 

concatenate utterances that are shorter than 8 seconds to its 

neighboring utterances.  

2.2. Audio Data Preparation and Feature Extraction 

2.2.1. Data Cleaning 

Our acoustic data comes from two sources. The first is the TED-

LIUM [5], which contains 340 hours of well transcribed data. 

The second part comes from Speech-Translation TED corpus, 

which is about 270 hours of data with some bad segments, e.g. 

music or transcriptions not comparing the wav files. We follow 

the way in kaldi toolkit [6] to do the cleaning1. This aimed to 

cut the bad part off and only retrain the segments that can be 

compared with the transcripts. And we got about 220 hours in 

this part. 

2.2.2. Dereverbration 

For speech dereverbration, we calculate the RT60 [7]  of the 

speech firstly. The speech whose RT60 is longer than 400ms is 

filtered with the Kalman filtering algorithm [8] to dereverberate 

the speech. Thus we get about 11,000 kalman filtered utterances 

and add them to the original data. 

2.2.3. Speed Perturbation 

Speed perturbation is done with 1.1 and 0.9 times for all the data 

above. Finally we obtain about total 1700 hours acoustic data to 

get robust performance in the end. 

2.2.4. Feature Extraction 

Our acoustic feature engineering is not complicated. The system 

is built using several different features including 39-

dimensional MFCC for GMM, 40-dimensional static MFCC 

and 80-dimensional filter banks for neural networks. These 

features can be augmented with i-vectors to train speaker 
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adapted networks. The dimension of i-vectors is chosen to be 

200 which is extracted from every 50 frames. I-vectors and 

features are combined in the input layer for TDNNs and 

BLSTMs. While for CNN, input layer only contains filter bank 

and i-vectors are combined with the fully-connected layer 

before the output. We also extracted fMLLR transformed 

feature on 340hr TED-LIUM data and found fMLLR features 

contribute no significant improvement compared to i-vector 

augmented system. So we only use i-vector to train our final 

speaker adapted systems. 

2.3. Acoustic Modeling 

We use DNN-HMM hybrid acoustic model for all our ASR 

experiments. All NN systems were trained using Lattice-free 

MMI (LF-MMI) [9] loss function with low frame rate (LFR) 

equals to 3 to predict context dependent phones (bi-phone). We 

mainly used three different types of neural net architecture, 

including deep convolutional neural network (DCNN), 

bidirectional LSTM (BLSTM) and time delayed deep neural 

network (TDNN). In GMM-HMM part, we use 13-dimension 

mel frequency cepstral coefficient (MFCC) with first and 

second derivatives with 500 hours data without speed 

perturbation. The dictionary provided in the TED-LIUM dataset 

is used for our GMM training. The final GMM has totally 

150,193 Gaussian mixtures, correspond to 4056 states. This 

500hr GMM-HMM was used to align all the 1500h data to 

generate state alignments for clustering bi-phone labels used in 

LF-MMI training. After clustering we finally get 3144 bi-

phones which equal the output nodes number of all our neural 

networks. 

2.3.1. Deep CNN 

We were inspired by the VGG net [10] and the deep CNN 

architecture used in [1] [2] to design our CNN model. We train 

our DCNN model with 80 dimension filter bank feature without 

first and second derivatives. We use batch normalization (BN) 

and ReLU nonlinear activations following each convolution 

layer. We stack 31 layer of such conv-BN-ReLU block with 

residual connections around every two of them. Most of the two 

dimensional time-frequency convolution kernels are all set to 3 

x 3 with stride 1x1. We set kernel size to 5 x 5 with stride 2 x 1 

in the 6th, 12th, 24th, 30th convolution layer to reduce the 

frequency dimension from 80 to 5. Every time we reduce the 

frequency dimension we double our kernel number. So as we 

go deeper, the kernel number is set to 32, 64, 128, 256, and 384. 

We train such DCNN with all the 1500h data to obtain system 

dcnn. 

2.3.2. BLSTM 

Our BLSTM model consists of 5 layers that has two 

unidirectional LSTM with 1024 cells and 512 projections. 256 

of the projections are recurrent units and the other 256 

projections are non-recurrent ones. 40 dimensional static 

MFCC feature is extracted for BLSTM training. By 

concatenating the two previous and the two following frames of 

MFCC, we use 40 * 5 = 200 dimension feature to train two 

BLSTM with different random seeds using all of the 1500h data. 

We call the two BLSTM with blstm1 and blstm2. 

2.3.3. TDNN 

 

For TDNN neural acoustic model, we use factored form of 

TDNN [3] to design our own network. The factorized TDNN 

(TDNN-F) is reported to beat common TDNN with deeper 

architecture [3], in order to identify some hyper parameter 

configuration, we first train TDNN-F models with only the 

TED-LIUM data and decode with a relatively small n-gram 

language model. We summarize the intermediate result in table 

1. Here we only report average WER of tst2013, tst2014 and 

tst2014.  

As can be seen from the table, it is beneficial to use i-vector 

or fMLLR transformed feature to train speaker adapted 

networks. Comparing the third row and the forth row, we find 

WER of fMLLR system is 15.09 which is worse than i-vector 

augmented system of 14.23. As we gradually increase the 

number of layers from 16 to 26, a steady performance 

improvement is obtained. TDNNs that is deeper than 26 may 

decrease in performance as the 31 layer net is worse than 26 

layer net. The 200 dimensional i-vector augmented 26 layer 

TDNN reaches a WER of 13.93.  Additional discriminative 

training (DT) also help, it helps to decrease WER from 14.03 to 

13.62. When adding the cleaned 220 hours of data, we lower the 

WER from 14.03 to 13.35. 

 

Table 1: TDNN results on TED-LIUM corpus 

#layer configuration average 

16 40MFCC 15.76 

16 40MFCC + 100ivec 15.53 

21 40MFCC + 100ivec 14.23 

21 40MFCC + fMLLR 15.09 

26 40MFCC + 100ivec 14.03 

26 40MFCC + 200ivec 13.93 

26 40MFCC + 100ivec + DT 13.62 

31 40MFCC + 100ivec 14.3 

26 40MFCC + 100ivec + 220h data 13.35 

 

Conclude from Table 1, our final TDNN use a 26 layers 

TDNN architecture. We abandon fMLLR and use 200 

dimensional i-vector augmented to MFCC to train speaker 

adapted net. Each hidden layer contains 1024 units and 160-

dimension bottleneck. The input to TDNN is 5 frames of 40-

dimension static MFCC. The other TDNN layer has an input 

context equals to 3 which has different time stride. We 

constructed 3 consecutive layers with time stride 1, 4 

consecutive layers with time stride 2 and 15 consecutive layers 

with time stride 3. Each of these consecutive layers with the 

same time stride is followed by a fully connected layer. We train 

two of them with different random seeds with total data, and the 

third TDNN with 80% data. After TDNN training we got tdnn1, 

tdnn2 and tdnn3. 

 

2.4. Language Model 

2.4.1. Data Preparation and the Vocabulary 

For the data preparation, number normalization and 

lowercasing are adopted to formatting the all-corpora. Next, 

punctuations are removed and the paragraphs are split into 

sentences. We choose 152217 English words to build the 

vocabulary and replace all the out-of-vocabulary (OOV) words 

in the corpora with the symbol “<unk>”.  
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2.4.2. N-gram Language Models 

The constrained all-corpora consists of various  text resources, 

such as news, TED subtitles, film subtitles, Europarl dataset and 

some web crawled materials. The Table 2 shows the details of 

the cleaned sub-corpora and their interpolation coefficients in 

n-gram language modeling. We estimate a series of sub-corpora 

5-gram language models using the SRILM toolkit [11] with the 

modified Kneser-Ney smoothing. And then, the development 

datasets are used for the perplexities and the interpolation 

weights tuning. By linearly interpolating the different sub-

corpora 5-gram models, the final back-off language model is 

estimated and adopted to the speech recognition system. The 

perplexities of the development datasets are listed in the Table 

3. 

 

Table 2: English language modelling datasets and interpolation 

coefficients. 

Text corpus # Words Interpolation 

TED  5.747 M 0.131 

OpenSubtitles 144.1 M 0.064 

Para WIT 3.263 M 0.029 

ParaCrawl + Common crawl   765.1 M 0.048 

News discussions 4638 M 0.397 

News articles  4004 M 0.331 

 

Table 3: The perplexities (PPL) of the English dev corpora. 

Dev set 5-gram LM 

tst2013 112.31 

tst2014 143.11 

tst2015 121.80 

 

 

2.4.3. LSTM based Neural Language Model 

To improve the computation efficiency in the neural language 

model, the vocabulary needs to be downsized. We select the top 

30000 frequent words from the cleaned corpora to construct a 

small vocabulary, and replace the out-of-vocabulary words in 

the cleaned corpora with the symbol “<oos>” according to the 
customized vocabulary.  

The LSTM based language model are trained with 

TensorFlow. The model contains two stacked dropout wrapped 

LSTM layers [12] with the hidden size of 256.  The word 

embedding size is 256 and the initial learning rate is 0.1. After 

the training, we apply the LSTM based language model in the 

lattice rescoring and n-best rescoring with the Kaldi toolkit [6]. 

The pruned lattice-rescoring algorithm in [13] helps to achieve 

lower word error rate (WER) in ASR. Both in the lattice 

rescoring and n-best rescoring stages, interpolating the 5-gram 

language model with the LSTM based language model can 

further improve the ASR accuracies. 

2.5. System combination 

In the first pass, we use 6 neural network systems described in 

section 2.3, e.g. dcnn, blstm1, blstm2, tdnn1, tdnn2, tdnn3 and 

5-gram language model described in section 2.4.2. We combine 

the system in the posterior level and generate the first pass 

ensemble results. We also select the best single network system 

tdnn1 to perform discriminative training, but found no 

performance gain when combine with the above 6 systems. The 

decoding lattices of the ensemble system are sent to a second 

pass decoder for lattice rescoring. 

3. Neural Machine Translation 

In this section, some post-processing details of ASR output and 

the architecture of our neural machine translation system are 

described. 

3.1. Punctuation Restoration 

The automatic speech recognition system only generates a 

stream of words without any punctuation symbols. In our work, 

we model the punctuation using the sequence to sequence 

architecture. Our punctuation restoration model is based on the 

Transformer architecture, which is based on attention only. In 

our work, given a sequence of words as our inputs, we label 

each word based on the punctuation after the word. Specifically, 

we label each word with comma, period, question mark, 

exclamation mark and non-punctuation.  

The training dataset contains 41.5M sentences in total. 

Sentences were encoded using byte-pair encoding [15] with 

source vocabulary of about 30k tokens. We evaluate the 

performance of our punctuation restoration model by precision, 

recall and F1 score. We present the results in table. 

 

Table 4: The result of our Punctuation Restoration model 

Dev set Precision Recall F1 value 

tst13 88.01% 82.18% 85.00% 

tst14 88.62% 84.28% 86.40% 

tst15 91.51% 86.26% 88.81% 

average 89.38% 84.24% 86.73% 

3.2. Disfluency Detection and Inverse Text Normalization 

Since the automatic speech recognition outputs often contain 

various disfluencies. In this paper, a simple but efficient 

detection approach is employed to identify and repair these 

disfluencies. At first, we remove the filled pauses, such as “uh” 
and “um”. Then we define a window to identify and remove 
the repetitions in the output of ASR system.  

After disfluency detection, the inverse text normalization is 

necessary for machine translation, because the corpus of 

machine translation are in written form, but the output of the 

automatic speech recognition are generally in spoken form, 

especially in figure, data and the amount of money. As shown 

in Figure 1, the word stream generated by ASR system is 

transformed into the standard form after punctuation restoration, 

disfluency detection and inverse text normalization. 

 

Figure 1: Post-processing for ASR output 

The output of ASR system:  

and the results from the twenty twenty two uh point five 

million sentences we selected sixteen point eight and 

which let us to throw like twenty two percent of the 

corpus 

 

After our post-process:  
and the results from the 22.5 million sentences, we 

selected 16.8 and which let us to throw like 22% of the 

corpus. 
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3.3. Data Preparation and Cleaning for NMT 

The parallel text data consists of four parts: Speech-Translation 

TED corpus, TED corpus (Web Inventory of Transcribed and 

Translated Talks, WIT), WMT2018 and OpenSubtitles2018.  

We tokenize both the English and Germany text data by 

the Moses tokenizer2. Then the English data is transformed to 

lower case. To simplify the post processing of translation, we 

do not transform the German data to lower case. Finally, we use 

BPE subword segmentation tool to process the English data and 

German data. 

We have observed some noise data, which cause a lot of 

translation errors. In order to improve the quality of parallel text 

data, we have cleaned the data. 

 The samples whose number of tokens are over 100 will be 

removed. 

 For one sentence pair, if the length rate of source/target is 

less than 1/2 or large than 2, they will be removed. 

 We use SRILM Toolkit [11] to train an English ngram 

language model and a German ngram language model 

respectively with the parallel text data. The two LMs are 

used to evaluate the perplexity (PPL) for the sentences. For 

one source sentence (English side) and target sentence 

(German), they are removed if they meet the following two 

conditions: (1) we use source LM to calculate PPL. The 

PPL of source sentence is larger than that of target sentence; 

(2) we use target LM to calculate PPL. The PPL of target 

sentence is larger than that of the source sentence.  

3.4. NMT Architecture 

Our model follows the Transformer architecture which is solely 

based on attention mechanisms [4]. In our setup, the encoder 

has six layers. Each layer is consist of two parts: multi-head 

self-attention network and position-wise fully connected feed-

forward network. The two parts employ both residual 

connection and layer-normalization. In the decoder, we employ 

masking to ensure that the prediction for the current word only 

depends on the previous words. 

The dimension of word embedding is set to 512. The 

hidden state size is set to 1024. The vocabulary sizes of English 

and German are set of 60,000. 

The sentences which have the similar number of tokens are 

grouped together. During training, the batches of size is set by 

the number of tokens which is set to 8000. We use the Adam 

optimizer to train the model. 

3.5. Fine-tune  

A large part of the training data comes from WMT, whose 

domain is news. But the test sets come from oral domain. After 

the systems are trained, we continue to train the systems by 

5000 steps with the WIT parallel text data.  

3.6. Ensemble 

It’s common to avoid over-fitting by using ensemble of several 

systems. There are two methods we have adopted. For one 

system training, we always average all of parameters across the 

last 20 checkpoints. For several system trainings, we compute 

                                                           
2 https://github.com/moses-

smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl 

the output tokens’ possibilities by averaging the systems’ 
output possibilities.  

In the final system, we choose six systems to apply the second 

ensemble. 

3.7. Re-scoring with NMT Variants 

In order to get better translation result, we test different NMT 

variant models in re-scoring n-best list. 

Target right-to-left NMT Model: When the target words 

are decoded by the NMT system, the later words will depend 

on the previous words decisions in the beam search decoder. 

So the word decision at time step t is much harder than that of 

time step t-1[16]. In order to alleviate this imbalance problem, 

a variant NMT model, which decodes the target words from 

right-to-left (R2L), is trained. The R2L model is used to re-

score the n-best list which produced by the main NMT model. 

The scores represents the conditional probabilities of the 

reversed translations given the source sentences. 

Target-to-source NMT Model: Moreover, the translations 

may be inadequate: the translations may repeat or miss out 

some words [17]. In order to cope with the inadequateness, we 

also test the target-to-source (T2S) model, which is trained with 

the source and target swapped.  

We first produce one n-best list with an ensemble of serval 

models. Then we do force decoding with target right-to-left, 

target-to-source NMT models. We treat each models scores as 

an individual feature. We use k-batched MIRA [18] to tune 

weights for all the features.  In order to get more diverse n-best 

list, we also try to increase the size of beam from 10 to 100 for 

re-scoring. 

4. Results 

4.1. Results for ASR 

Table 5 shows our systems built for the ASR submission. In the 

first pass, we use 6 neural network system described in section 

2.3, e.g. dcnn, blstm1, blstm2, tdnn1, tdnn2, tdnn3 and 5-gram 

language model described in section 2.4.2. We combine the 

system in the posterior level and generate the first pass 

ensemble results. The decoding lattices of the ensemble system 

are sent to a second pass decoder for lattice rescoring. 

 

Table 5: The WER result of our ASR model 

System tst2013 tst2014 tst2015 average 

dcnn 11.15 8.86 7.77 9.26 

blstm1 8.65 7.84 8.02 8.17 

blstm2 8.78 8.07 8.03 8.29 

tdnn1 8.5 7.35 6.24 7.36 

tdnn2 8.52 7.42 6.15 7.36 

tdnn3 8.47 7.55 6.18 7.4 

+ensemble 8.01 7.08 6.54 7.21 

+rescoring 7.49 6.76 5.95 6.73 

 

4.2. Results for NMT 

Table 6 shows the machine translation results on validation 
sets. All the results are cased BLEU evaluate by multi-
bleu.perl script in Moses3 . uur data cleaning techniuue 

3https://github.com/moses-

smt/mosesdecoder/blob/master/scripts/generic/multi-bleu.perl 
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improves the baseline by 0.74 BLEU. Due to the domain 
of training data is not very consistent with that of test data, 
we continue training the system with the WIT parallel text 
data. This fine-tune techniuue get an improvement of 1.43 
BLEU. In order to get more diverse models and better 
ensemble results, we train 6 models independently with 
different random initializations. The ensemble result gives 
an improvement of 0.53 BLEU over best single system. By 
increasing the beam size from 10 to 100 during decoding, 
we achieve another improvement of 0.05 BLEU. We add 
six right-to-left and six target-to-source NMT models as re-
scoring features. It improved the system by 0.85 BLEU. 
The test2013 set is used as development set to tune the 
weights of re-scoring features.  
 

Table 6: The English→Germany NMT results on three 

development sets. Submitted system is the last system.  

system tst2013 tst2014 tst2015 average 

baseline 34.73 29.09 33.02 32.28  

+data cleaning 35.4 30.03 33.62 33.02  

+fine-tune 37.13 31.28 34.93 34.45  

+ensemble 37.79 31.56 35.58 34.98  

+beam(10 → 100) 37.92 31.32 35.86 35.03  

+rescore(6*R2L,6*T2S) 38.90 32.36 36.38 35.88  

 
 

4.3. Results for Speech Translation 

Table 7 shows the final speech translation results on three test 

set. In order to tune the ASR and NMT system individually. 

We first segment the full utterance, and then align the utterance 

into segments with the correct English text segments and 

German translations. The transcript of the best ASR system 

was then passed to disfluency detection, Punctuation 

Restoration and text normalization module. Finally, ASR 

outputs with punctuations were translated into German. The 

average result of three test set for our Speech Translation is 

31.02 BLEU.  

 

Table 7: The English→Germany speech translation results on 

three sets. 

system tst2013 tst2014 tst2015 average 

final system 32.95 28.28 31.82 31.02 

 

5. Conclusions 

This paper describes our pipeline system for the IWSLT 2018 

Speech Translation task from English to German. The whole 

pipeline are consist of the wav utterance segmentation module, 

the ASR system, the punctuation restoration and the NMT 

system. 

As for the ASR system, we adopted an ensemble system of 

Deep-CNN, BLSTM, TDNN, n-gram Language model with 

lattice rescoring. According to our experiments, TDNN 

achieved the lowest WER among these three acoustic modeling 

network for this task. For our tdnn acoustic modeling, we found 

adding layers, i-vector, cleaned data are effective. We have 

achieved average WER of 6.73 over three test sets using the 

combination system.  For the NMT system, we also use an 

ensemble of Transformer system with n-best rescoring. And we 

use various techniques in our system, such as data cleaning, 

fine-tune, ensemble of models and n-best rescoring. These 

techniques help our system achieve 3.6 BLEU better than 

baseline. We use the outputs of the best ASR system as input 

of our NMT system, and we achieved average BLEU score of 

31.02 over three development sets.  

How to use document-level information to improve the 

ASR and NMT system performance and build a robust NMT 

system will be our future work. 
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Abstract

This paper describes the joint submission to the IWSLT 2018
Low Resource MT task by Samsung R&D Institute, Poland,
and the University of Edinburgh. We focused on supplement-
ing the very limited in-domain Basque-English training data
with out-of-domain data, with synthetic data, and with data
for other language pairs. We also experimented with a vari-
ety of model architectures and features, which included the
development of extensions to the Nematus toolkit. Our sub-
mission was ultimately produced by a system combination in
which we reranked translations from our strongest individual
system using multiple weaker systems.

1. Introduction

This paper describes the joint submission to the IWSLT 2018
Low Resource MT task by Samsung R&D Institute, Poland,
and the University of Edinburgh. We built several multilin-
gual systems using the Tensor2Tensor1 and Nematus2 toolk-
its, ultimately choosing to use a system combination in which
we reranked translations from our strongest individual sys-
tem using multiple weaker systems.

As there was so little in-domain Basque-English data
available, we experimented with the use of out-of-domain
data, with the addition of synthetic data via back-translation,
and with the incorporation of data for other language pairs.
To support multilingual translation, we followed the single-
model approach of [1] and simply prepended each source
sentence with a token specifying the target language.

We experimented with a variety of model architectures
and features. This involved the development of several ex-
tensions to the Nematus toolkit, including support for multi-
GPU training, label smoothing, and mixtures of softmaxes.
We have contributed our code to the public Nematus reposi-
tory.

1https://github.com/tensorflow/tensor2tensor:
1.6.3

2https://github.com/EdinburghNLP/nematus

2. Training Data
In brief, we used all of the provided in-domain parallel train-
ing data along with parallel data from OpenSubtitles and the
Open Data Euskadil Repository. We also produced synthetic
data by back-translating from English into Basque. Table 1
lists the individual parallel corpora that made up our training
data. Note that not all of our systems used all of the data.
We will indicate differences when describing the individual
systems.

2.1. In-Domain Data

We used all of the available in-domain data, which we filtered
in order to remove the TED talks covered by the devset. The
task organisers had already removed the devset talks from the
Basque-English training corpus, but the talks were present in
the training data for all other language pairs. Since we were
evaluating on the devset during system development, we fil-
tered the in-domain data to avoid being misled by artificially
strong results. In preliminary multilingual Nematus systems
that used only the in-domain data, this filtering had a signifi-
cant impact, reducing the BLEU score from 16.25 to 9.96.

For the Basque-Spanish and Spanish-English pairs, we
used the excised training data to create supplementary de-
vsets. Since the Basque-English devset only contained 1,140
sentence pairs, these additional devsets gave us greater con-
fidence when evaluating system changes.

More generally, we noticed that the in-domain corpora
contained many of the same talks, in effect reducing the
amount of available in-domain Basque data.

2.2. Out-of-Domain Data

We added out-of-domain data for the Basque-English,
Basque-Spanish, Spanish-English, and French-English lan-
guage pairs. For all four, we used OpenSubtitles2018 data
from the OPUS corpus. In order to avoid making our train-
ing data too unbalanced, we undersampled from the large
Spanish-English and French-English corpora. This was done
arbitrarily: we simply used the first N -million sentence pairs
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Pair Corpus Sentence Pairs eu src es src en tgt es tgt

eu-en In-domain 5,623 5,623 - 5,623 -
OpenSubtitles2018 805,780 805,780 - 805,780 -
Synthetic in-domain 277,097 277,097 - 277,097 -
Synthetic OpenSubtitles2018 4,000,000 4,000,000 - 4,000,000 -
Synthetic TED2013 1,904,674 1,904,674 - 1,904,674 -

eu-es In-domain 5,546 5,546 - - 5,546
OpenSubtitles2018 793,593 793,593 - - 793,593
Euskadil 926,941 926,941 - - 926,941

es-en In-domain 277,097 - 277,097 277,097 -
OpenSubtitles2018 10,000,000 - 10,000,000 10,000,000 -

es-fr In-domain 277,278 - 277,278 277,278 -
eu-fr In-domain 5,815 - 5,815 5,815 -
fr-en In-domain 287,137 - - 287,137 -

OpenSubtitles2018 10,000,000 - 10,000,000 10,000,000 -

Total 29,566,581 8,719,254 20,847,327 27,840,501 1,726,080

Table 1: Statistics for the parallel training corpora used in our submission (note that not all individual systems use all of the
corpora). Since we are interested in Basque-to-English translation (primarily) as well as Basque-to-Spanish and Spanish-and-
English, we break down the corpus sizes for those source and target languages.

occurring in the full corpora. For Basque-Spanish, we also
used the parallel data from the Open Data Euskadil Reposi-
tory.

At the outset, we assumed that translation from Basque
into Spanish would be easier than into English due to the
greater availability of in-domain data. We contemplated piv-
oting from Basque to English via Spanish and therefore when
selecting data from OpenSubtitles, we made an effort to in-
clude sufficient data to support high-quality Basque-Spanish
and Spanish-English translation. However, translation qual-
ity for Basque-Spanish and Basque-English (as measured by
BLEU) proved to be very similar and we therefore focused
on direct translation from Basque to English.

As with the in-domain data, we noticed that there is
a high degree of content overlap between the multilingual
OpenSubtitles corpora. For OpenSubtitles2018, between
70% and 90% of the Basque side is common for Basque-
English, Basque-Spanish and Basque-French making the ef-
fective size of Basque data seen by the system relatively
smaller.

2.3. Synthetic Data

Basque is a language isolate spoken by less than 1 million
people and as such there are few readily available parallel
resources. One of the simplest ways to get more parallel data
is to generate it syntheticaly through back-translation. In [2]
it was shown that even poor quality synthetic corpora can
improve translation quality. We used all available training
data to train an English-to-Basque back-translation system
for synthetic data generation (see Section 3.2 for details of
the back-translation system).

In addition to back-translating the English side of the in-

domain Spanish-English corpus, we back-translated the En-
glish talks from the OPUS TED2013 corpus, after filtering
out the dev and test set talks. We also selected 4M pseudo
in-domain sentences from OpenSubtitles using the filtering
approach proposed in [3].

3. Tensor2Tensor Systems

In preliminary experiments, we tried training Transformer
models [4] using both Tensor2Tensor and Marian, even-
tually choosing the former as the BLEU was higher. In
all experiments we used the hyperparameters for trans-
former base, setting the hidden layer size to 512, filter size
to 2048, warmup steps to 16,000 and number of heads to
8. While training the back-translation model we set the
layer prepostprocess dropout parameter to 0.1, while in the
base systems it was set to 0.2. Each training was run on 8
GPUs for up to 300,000 training steps, with a batch size of
100 sentences per GPU.

3.1. Preprocessing

We relied on the preprocessing implemented in Ten-
sor2Tensor for tokenization and wordpiece segmentation.
For each corpus configuration we defined a new T2T prob-
lem inheriting from default TranslateProblem. We set the
subword vocabulary size to 32k for all training runs, either
bilingual or multilingual. The only additional preprocess-
ing we did was punctuation normalization using the Moses
toolkit and prepending the <2xx> tag at the beginning of
source sentences, where xx was the code for the target lan-
guage.
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System en-eu es-eu en-es

EnFrEs2EuFrEs 13.26 14.89 41.92

Table 2: BLEU scores for the Tensor2Tensor systems on
dev2018 (eu-en) and on eu-es and es-en versions of the dev
set (extracted from the training data). Since this was a back-
translation system, we inverted the devsets to evaluate trans-
lation in the opposite direction. This system was used for
back-translation of monolingual English corpora

3.2. Back-Translation System

For back-translation, we used all of the in-domain data listed
in Table 1, along with the OpenSubtitles corpora for Basque-
English and Basque-Spanish, and the Euskadil corpus for
Basque-Spanish. We also used 1M sentence pairs of Spanish-
English, making 5.5M sentence pairs in total.

We trained both Nematus and Tensor2Tensor systems on
the same dataset, obtaining results of 12.14 BLEU and 13.26
BLEU respectively on the inverted Basque-English devset
(see Table 2). We chose the better-performing Tensor2Tensor
system for synthetic corpus generation.

3.3. Base System

For Basque-to-English translation, we experimented with
different language pair and corpus selections (Table 3). We
started with a bilingual model trained only on in-domain
data. Next we trained a multilingual model adding all di-
rections for in-domain data and oversampling the Basque-
English data by a factor of 20 (to better balance the larger
in-domain Spanish-English corpus). This resulted in a sig-
nificant improvement of almost 7 BLEU points. After adding
out-of-domain and synthetic corpora we got another 5 BLEU
points. Next we experimented with removing the French
data from the multilingual setting as it had the least Basque
sentences, giving little additional input for that language
and adding complexity be adding another language into the
model. We observed that removing the French parallel cor-
pora gave significantly better results, improving Basque-
English translation by 1 BLEU point on dev2018. For the
final submission we used the EuEs2EnEs model for n-best
list generation.

4. Nematus Systems

Nematus [5] implements a GRU-based attentional encoder-
decoder. Originally based on the model in [6], the toolkit has
been extended to support features such as deep architectures
and input factors. Our system was based on the configura-
tion used in University of Edinburgh’s WMT17 submissions
[7]. To this we added several further extensions, which we
describe below.

System eu-en eu-es es-en

bilingual in-domain only 11.72 - -
EuFrEs2EnFrEs in-domain only 18.41
+ out-of-domain 22.26 22.28 42.76
+ back-translation 23.45 17.81 43.03
EuEs2EnEs 25.09

Table 3: BLEU scores for the Tensor2Tensor systems on
dev2018 (eu-en) and on eu-es and es-en versions of the
dev set (extracted from the training data). The last system
EuEs2EnEs was used to produce the 20-best list for further
rescoring.

4.1. Preprocessing

All of our Nematus systems used a common preprocessing
pipeline, consisting of five steps: normalization, tokeniza-
tion, corpus cleaning, truecasing, and BPE segmentation. [8]
We used scripts from the Moses toolkit [9] to perform the
first four steps and subword-nmt3 to perform the last.

The Moses tokenizer includes language-specific rules,
which we opted to use.4 However, we trained a shared true-
casing model for all languages. The corpus cleaning script
removes empty sentences and sentence pairs with length ra-
tios greater than 9:1.

We trained a single joint BPE model over the full mul-
tilingual corpus, using 40,000 merge operations. Character
sequences were only merged if they were observed 50 times
in the training data.

4.2. Base System

Our base Nematus system used all of the data in Table 1 ex-
cept for the synthetic data (which was added later for the fi-
nal systems) and the French-English OpenSubtitles data. For
Spanish-English we used 1M sentence pairs of OpenSubtitles
rather than 10M.

4.2.1. Network Configuration

We used a word embedding size of 512 and hidden layer size
of 1024. Both the encoder and decoder used a deep transition
architecture [10], with 4 layers in the encoder and 8 in the
decoder. We used layer normalization [11].

We tied the weights of the target-side embedding and the
transpose of the output weight matrix [12]. Since the source
and target sides used the same vocabulary, we also tied the
source-side and target-side embeddings.

4.2.2. Training

We used the Adam [13] optimization algorithm with a learn-
ing rate of 0.0001 and a batch size of 80 (except where

3https://github.com/rsennrich/subword-nmt
4Moses does not include Basque-specific tokenization rules, so it fell

back to generic tokenization for that language
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noted). Training was stopped when the validation cross-
entropy failed to reach a new minimum for 10 consecutive
save-points (saving every 10,000 updates). The save-point
used in the final model was selected based on the BLEU score
of the validation set.

To speed up training, we excluded sentences in which
either the source or target sentence contained more than 50
tokens.

In preliminary experiments, we found that it was impor-
tant to use dropout (giving improvements of around 2 BLEU).
The dropout rate was set to 0.1 for source and target word to-
kens and to 0.2 for embedding and hidden layers.

4.3. Extensions

4.3.1. Multi-GPU Support

Training the base model was already pushing the 12GB
memory limit of our GPUs, restricting our ability to add
new features. Since we did not want to risk compromising
model quality by reducing the network size, we opted to im-
plement multi-GPU training in order to reduce the per-GPU
batch size, while maintaining (or increasing) the effective to-
tal batch size.5 We added support for synchronous training
in which the batch is split between multiple GPUs (on the
same server), each running a full replica of the model, and
then the gradients of the sub-batches are averaged. Unlike
asynchronous training, this method does not affect transla-
tion quality compared to single-GPU training (assuming the
batch size is constant).

4.3.2. Source language factors

As already mentioned, our training data contains tags to in-
dicate the target language. In preliminary experiments, we
found that it was beneficial to also specify the source lan-
guage, which we did through the use of token-level factors.
Our intuition was that the factors would help to disambiguate
subword units that occur in multiple languages, but serve
language-specific roles.

Since Nematus already included support for factors [14],
this was simply a case of annotating the training and dev/test
data with language tags and adjusting the network’s word
embedding settings: of the 512 source embedding units we
reserved 12 for the source language factor tag and the re-
maining 500 for the BPE token embedding.

A contrastive experiment showing BLEU scores on
dev2018 with and without source language factors can be
found in Table 4.

4.3.3. Label smoothing

We implemented label smoothing [15], a regularization tech-
nique which has been shown to be effective for self-attention-
based translation models [4], and, more recently, for RNN-

5An alternative would have been to use delayed updates on a single GPU
– or of course to buy GPUs with more memory.

System eu-en eu-es es-en

Base 19.99 20.45 39.74
Base + source language factors 20.12 20.86 40.16
Base + label smoothing 20.46 20.65 40.16
Base + mixture of softmaxes 20.02 21.02 40.14
Base + fine-tuning 20.75 1.86 39.94

Table 4: BLEU scores for Nematus systems on dev2018 (eu-
en) and on eu-es and es-en versions of the dev set (extracted
from the training data). These systems use all of the parallel
training data except for the synthetic data.

based models similar to ours [16]. Following prior work, we
set the ǫ parameter to 0.1. See Table 4 for results of a con-
trastive experiments with and without label smoothing.

4.3.4. Mixture of Softmaxes

Like all standard neural translation models, our base model
uses a softmax function to output a probability distribution
over the target vocabulary for each timestep. For language
modelling, [17] show that performance can be improved
by using a combination of multiple softmax components.
We reimplemented their method within Nematus and exper-
imented with using a mixture of three softmax components.
See Table 4 for results of a contrastive experiments with and
without a mixture of softmaxes.

4.3.5. Fine-tuning

Since our system was trained on data drawn from multiple
domains and covering several language pairs, we anticipated
that there would be a benefit to fine-tuning on in-domain
Basque-English data. After selecting the best model (accord-
ing to validation set BLEU), we resumed training using only
the in-domain Basque-English data (5,623 sentence pairs).
See Table 4 for results of a contrastive experiment with and
without fine-tuning.

4.4. Final Systems

Our final Nematus systems used all of the training data from
Table 1, with the exception of the synthetic TED2013 cor-
pus (since training was started before the filtered corpus
was produced) and the French-English OpenSubtitles cor-
pus. We used a 1M sentence pair version of the Spanish-
English OpenSubtitles corpus. As in the Tensor2Tensor sys-
tem, we oversampled the in-domain Basque-English corpus
by a factor of 20. We experimented with removing the French
training data but, unlike the Tensor2Tensor system, this did
not improve performance (possibly because we had used less
French data to start with).

We used all of the extensions just described. We trained
two such systems, one using two GPUs with a total batch
size of 80 and one using three GPUs with a total batch size
of 160. Finally, we fine-tuned these systems giving a to-
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System dev2018 tst2018

Nematus (batch size 80) 22.56 23.18
Nematus (batch size 80, fine-tuned) 23.22 23.65
Nematus (batch size 160) 22.94 23.56
Nematus (batch size 160, fine-tuned) 23.86 24.12
Tensor2Tensor 25.09 25.40
+ reranking (default length penalty) 25.40 25.97
+ tuned length penalty 25.60 26.21

Table 5: BLEU scores on the official dev and test sets. The
first five rows show the results for the individual Nematus and
Tensor2Tensor systems used in the final system combination.
The bottom two rows show the results of reranking the 20-
best list from the Tensor2Tensor system with the Nematus
systems and then tuning the length normalization parameter.
The system in the bottom row is our submitted system.

tal of four Nematus systems. Unlike our base system, fine-
tuning using only the in-domain data did not improve trans-
lation quality, possibly due to the oversampling of this data
in the training set. Instead, we used a fine-tuning corpus
that combined the genuine in-domain data with the synthetic
in-domain data (which was back-translated from the English
side of the Spanish-English corpus). Results with and with-
out fine-tuning are given in Table 5.

5. System Combination
Of the individual systems, we achieved the best performance
on the devset using the Tensor2Tensor EuEs2EnEs system.
We used that system to generate a 20-best list, which we
then rescored using the four final Nematus systems. After
rescoring, we renormalized the individual scores for sentence
length, optimising the length penalty (i.e., the alpha value in
[18]) on dev2018, setting it to 1.5 in our submission (in all
previous systems, the length penalty was set to the default
value of 1.0). Finally, we reranked the list according to the
sum of the five renormalized scores and used the resulting
1-best translations in our submission.

Table 5 gives BLEU scores on the dev and test sets for the
five component systems and the reranked system, both with
and without length penalty tuning.

6. Conclusions
For this task, we focused on supplementing the very lim-
ited in-domain Basque-to-English training data with out-of-
domain data, with synthetic data, and with data for other lan-
guage pairs. Through data alone, we improved translation
quality from 11.72 to 25.09 BLEU.

Although our Nematus systems underperformed the Ten-
sor2Tensor systems, we were able to narrow the gap through
extensions to the base model, including label smoothing and
source language factors. When evaluated on tst2018, our
best Nematus system was 1.3 BLEU behind our best Ten-

sor2Tensor system.
Despite the Nematus systems being weaker, we were able

to further improve performance by reranking a 20-best list
from the Tensor2Tensor system using the four final Nema-
tus systems. Tuning the length penalty also boosted perfor-
mance slightly. Our submitted system scored 26.21 BLEU on
tst2018, outperforming the individual Tensor2Tensor system
by 0.81 BLEU.
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Abstract
This report summarizes the Air Force Research Labora-
tory (AFRL) machine translation (MT) and automatic speech
recognition (ASR) systems submitted to the spoken language
translation (SLT) and low-resource MT tasks as part of the
IWSLT18 evaluation campaign.

1. Introduction
As part of the evaluation campaign for the 2018 International
Workshop on Spoken Language Translation (IWSLT18) [1],
the AFRL Human Language Technology team applied and
improved techniques from previous workshops [2] and Con-
ference onMachine Translation efforts [3] to the Spoken Lan-
guage Translation and Low-Resource Machine Translation
tasks.

2. Spoken Language Translation
2.1. Automatic Speech Recognition

This section describes the ASR systems that were developed
for the baseline condition of the Speech Translation task. We
trained two different English systems and performed system
combination to obtain the final hypothesis for translation.
Section 2.1.1 describes that languagemodels (LMs) that were
used for decoding and rescoring. Section 2.1.2 discusses the
Kaldi ASR system, and Section 2.1.3 describes the Hidden
Markov Model ToolKit (HTK) Tensorflow system. Finally,
Section 2.1.4 describes how we segmented the test data and
performed system combination.

2.1.1. Language Models

LMs were estimated on the provided TED data and subsets
of News Crawl 2007-2017 and News Discussions versions 1-
3. The subset of each news corpus was selected using cross-
entropy difference scoring [4] with TED as the in-domain
text, and selection thresholds were chosen to use 1/8 of each
corpus to train N-gram LMs, and 1/16 of each corpus to train
a recurrent neural network (RNN) LM. Interpolated bigram,
trigram, and 4-gram LMs were estimated using the SRILM
Toolkit,1 and a RNNmaximum entropy LMwas trained using
the RNNLM Toolkit.2 The RNN included 160 hidden units,

1http://www.speech.sri.com/projects/srilm
2http://www.fit.vutbr.cz/$\sim$imikolov/rnnlm

Table 1: Kaldi WER. Decoding was performed using a tri-
gram LM trained on TED.

Acoustic Training Data dev2010 tst2010 tst2013
Speech-Translation TED 19.8 19.6 30.5
TEDLIUM 16.9 14.8 22.3
Combined 16.6 15.1 23.6

300 classes in the output layer, 4-gram features for the di-
rect connections, and a hash size of 109. The LM vocabulary
included 100,000 words that were chosen using the select-
vocab tool from SRILM.

2.1.2. Kaldi System

The acoustic training data available for this year’s evalua-
tion included the Speech-Translation TED corpus and the
TEDLIUM corpus. Based on a preliminary analysis of the
Speech-Translation TED corpus, we removed all segments
longer than 15 seconds from this corpus. The devtest and off-
limit talks were sequestered from TEDLIUM, and a third data
set was created by searching the Speech-Translation TED
and TEDLIUM corpora for non-overlapping time segments.
Next, an initial set of ASR systems were trained on each data
set using the Kaldi open source speech recognition toolkit
[5]. All Kaldi models discussed in this paper are based on
the chain time delay neural network (TDNN)-rectified linear
unit (ReLU) setup using i-vectors.3 Standard data augmenta-
tion methods were applied during the Mel frequency cepstral
coefficient (MFCC) feature generation stage, such as speech
and volume perturbation. Each system was decoded using
the same trigram LM, which was estimated from the provided
TED data using the SRILM toolkit. Table 1 shows the word
error rate (WER) obtained on dev2010, tst2010, and tst2013.

Based on the results in Table 1, a Kaldi ASR system was
trained on TEDLIUM using the interpolated bigram LM de-
scribed in Section 2.1.1. This model was then used to decode
all of the audio from the Speech-Translation TED corpus (in-
cluding segments longer than 15 seconds), and the ASR de-
rived transcripts were folded in with the TEDLIUM data, as
in a semi-supervised training scenario, to build the final Kaldi
ASR system. This data set is referred to as TEDLIUM+ASR

3http://github.com/kaldi-asr/kaldi/tree/master/egs/
swbd/s5c/local/chain
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Table 2: Kaldi WER. Decoding was performed using an in-
terpolated bigram LM, and rescoring was applied using an
interpolated 4-gram and RNN LM.

ASR System dev2010 tst2010 tst2013
Kaldi TEDLIUM 14.0 11.9 17.7
Kaldi TEDLIUM+ASR 13.5 11.4 17.0

in the remainder of this paper.
The test data was decoded as follows. First, the recogni-

tion lattices from the Kaldi bigram systemwere rescored with
the 4-gram LM. Next, 1000-best lists were extracted from
each lattice and rescored with the RNN LM. The final LM
scores were obtained by linearly interpolating the log proba-
bilities from the 4-gram and RNN LM. Interpolation weights
of 0.25 for the 4-gram and 0.75 for the RNN were chosen
based on results from previous experiments. Table 2 shows
the final WER obtained with each system. Based on these re-
sults, we used the TEDLIUM+ASR system in all remaining
experiments.

2.1.3. HTK-Tensorflow System

A hybrid neural network hidden Markov model (HMM)
speech recognition system was developed using Tensorflow
[6] and a version of HTK4 that we modified according
to the method of [7]. First, a Gaussian mixture model
(GMM)-HMM system was trained on TEDLIUM. Phonemes
were modeled using word-position-dependent state-clustered
across-word triphones, and the final HMM set included 6000
shared states with an average of 28 mixtures per state. The
feature set consisted of 12 perceptual linear prediction (PLP)
coefficients, plus the zeroth coefficient, with mean and vari-
ance normalization applied on a per talk basis. Delta, ac-
celeration, and third differential coefficents were appended
to form a 52 dimensional vector, and heteroscedastic linear
discriminant analysis (HLDA) was used to reduce the fea-
ture dimension to 39. Speaker adaptive training (SAT) was
applied using constrained maximum likelihood linear regres-
sion (CMLLR) transforms, and the models were discrimina-
tively trained using the minimum phone error (MPE) crite-
rion.

A residual network (ResNet) was trained on the
TEDLIUM+ASR data set described in Section 2.1.2. This
network is based on the 18-layer network described in [8],
with the batchnorm and ReLU activations moved to utilize
full pre-activation residual units described in [9], and an ad-
ditional fully connected layer for i-vector input. Figure 1
shows the ResNet structure. A context window of 17 was
applied to the feature input, which included 40 log filterbank
outputs normalized to zero mean and unit variance on a per
talk basis. The 100 dimensional i-vectors were extracted on
a per-talk basis with an i-vector extractor that was trained on

4http://htk.eng.cam.ac.uk
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Figure 1: ResNet architecture based on [8, 9] with convolu-
tional (conv), max pooling (maxpool), average pooling (avg-
pool), and fully connected (fc) layers. H×W is the filter size
and /2 indicates that a stride of 2 was applied.

TEDLIUMusing the same procedure as our IWSLT2015 sys-
tem [10]. Cross entropy training was performed using a mini-
batch size of 512 and an initial learning rate of 0.0005 that
was adjusted according to the QuickNet newbob algorithm.5

Recognition lattices were produced using HDecode with
the interpolated trigram LM described in Section 2.1.1, and
then rescored with the 4-gram and RNN LM using the same
procedure as the Kaldi system. Next, confidence scores were
estimated at the acoustic frame level by aligning the 20-best
hypotheses for each utterance and counting the number of
matching HMM states. An adapted ResNet was estimated

5http://www.icsi.berkeley.edu/Speech/faq/nn-train.html
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Table 3: HTK-Tensorflow WER. Decoding was performed
using an interpolated trigram LM, and rescoring was applied
using an interpolated 4-gram and RNN LM.

ASR System dev2010 tst2010 tst2013
ResNet 15.4 12.9 17.5
ResNet-Adapted 15.3 12.6 16.1

for each talk using frames that had a confidence score of 0.9
or higher and a single epoch of cross-entropy training with a
learning rate of 0.0000625. Finally, the test set was decoded a
second time and LM rescoring was reapplied. Table 3 shows
the WER on dev2010, tst2010, and tst2013.

2.1.4. Test Segmentation and System Combination

The WER results reported in the previous sections were ob-
tained by evaluating each ASR system on the automatically
derived segments from the baseline implementation.6 It was
discovered that the segment boundaries did not always align
with non-speech; therefore, we decided to use an alternative
segmentation method.

A neural network based speech activity detector (SAD)
was developed using Tensorflow. The SAD was trained on
40 hours from the TEDLIUM corpus using the automatically
generated phoneme alignments from the HTK GMM-HMM
system to define the speech/non-speech boundaries. The net-
work included a context window of 41 frames on the input,
a hidden layer of 1024 neurons with rectified linear activa-
tion functions, and 2 output units corresponding to speech
and non-speech. The feature set consisted of 40 log filterbank
outputs that were normalized to zero mean and unit variance.
Automatic segmentation of the test data was performed by
evaluating the SAD, applying a dynamic programming al-
gorithm to choose the best sequence of states, and defining
utterance boundaries at the midpoint of each non-speech seg-
ments longer than 0.5 seconds. Lastly, non-speech segments
longer than 1.0 second were trimmed from each utterance.

The final hypothesis was selected by applying N-best rec-
ognizer output voting error reduction (ROVER) to the out-
put from the Kaldi TEDLIUM+ASR and HTK-Tensorflow
ResNet-Adapted system. Table 4 shows the WER obtain us-
ing the updated segmentation. Comparing Table 4 with the
results in Table 2 and 3, we can see that the updated segmen-
tation method provided a substantial improvement in WER.

2.2. ASR Postprocessing

We employed the provided SLT.KIT punctuator component
to re-punctuate our ASR output before applying a truecaser
model to induce the most common case for an English word
before translating with the Marian section described in the
next section.

6http://github.com/isl-mt/SLT.KIT

Table 4: WER using the updated test segmentation method.
The final ASR hypothesis was obtained using N-best
ROVER.
ASR System dev2010 tst2010 tst2013
Kaldi TEDLIUM+ASR 9.5 7.7 12.8
ResNet-Adapted 11.2 8.6 11.2
N-best ROVER 9.5 6.9 9.8

Table 5: English-German cased BLEU scores for the SLT
task. For comparison purposes, this table includes the scores
obtained with the reference English source text.

English Transcripts dev2010 tst2010 tst2013
Reference 27.10 27.40 28.83
ASR 18.48 17.20 18.40

2.3. Machine Translation

Lastly, a Marian [11] neural machine translation system was
employed to translate the repunctuated text from English into
German. This system was trained on the 41 million lines of
preprocessed data provided by theWMT18 organizers for the
news-translation shared task[12]. The data was truecased for
uniformity, then a byte-pair encoding (BPE) [13] model was
trained jointly on the source and target data with 90k merge
operations.

As described in our WMT18 news-task efforts[3], we
used the same parameters in training our Marian transformer
[14] model:

• We used an encoding depth of 6 layers and a decoding
depth of 6 layers.

• We used 8 transformer heads.

• We held the vocabulary size constant during training to
90k entries each for source and target.

• We held the word embedding dimensionality to 512 for
all models.

• We used 1024 units in the hidden layer (where appro-
priate).

• We exclusively used the WMT newstest2014 test set
for validation.

2.4. Results

Results of scoring our repunctuated, translated ASR output
and various references are shown in Table 5.

3. Low-Resource Machine Translation
For the low-resource translation task, we tried a variety of
approaches with Marian [11], and Moses[15] toolkits. We
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Table 6: Corpus size for each language pair in training corpus

Lang. Pair Lines
Basque–English 5,623
French–English 288,366
Spanish–English 278,297
Total corpus 572,286

tried additional approaches with stemming and morphologi-
cal processing, but systems trained with data processed in this
manner were not ready in time for evaluation submission.

3.1. Common Training Corpus

For many of the experiments across different toolkits and sys-
tems, we constructed a common training corpus with uniform
preprocessing in order to reduce variables when comparing
different conditions.

Using the provided parallel Basque–English, French–
English, and Spanish–English TED corpora [16], we con-
struct a training corpus containing all three language pairs.
Sizes of each portion of the training corpus are listed in Table
6. A joint BPE model was trained with 89,500 merge opera-
tions on the combination of all languages in the training data,
then applied to the unified training corpus.

A similar corpus for use in backtranslation was con-
structed from the provided English–Basque, French–Basque,
and Spanish–Basque corpora. Due to the small size of each
of these component corpora, we also add the Basque–English
portion of the OpenSubititles Corpus7. Sizes of each portion
of this backtranslation training corpus are listed in Table 7.
The BPE model from the ‘forward’ was used to segment the
source and target data.

For some Marian experiments, we also constructed
monolingual Basque and English corpora for use in con-
structing pretrained word embeddings. We use 50 million
lines from the English monolingual CommonCrawl corpus
selected for use in backtranslation from our WMT17 news-
task efforts [17]. Additional monolingual Basque data was
taken from the Commoncrawl website8 and language-filtered
using amodified C implementation9 of the algorithm outlined
in [18], yielding a Basque monolingual corpus of 38 million
lines. We then apply BPE to each of these corpora with the
same model as above and use word2vec [19] to generate 512-
dimension word embeddings compatible with our settings in
Marian.

3.2. Marian Systems

We spent the bulk of our efforts building systems with the
Marian toolkit, experimenting with a variety of settings along
two major categories: Sentence-weighting and backtrans-

7http://www.opensubtitles.org
8http://www.commoncrawl.org
9https://github.com/saffsd/langid.c

Table 7: Corpus size for each language pair in backtranslation
training corpus

Lang. Pair Lines
English–Basque 5,623
French–Basque 6,948
Spanish–Basque 6,668
Basque–English OpenSubtitles 458,380
Total corpus 477,619

lated systems.

3.2.1. Sentence-Weighted training

We used the “forward” corpus outlined in Section 3.1 to train
Marian systems with the same network parameters as out-
lined in the SLT translation system in Section 2.3. In Ta-
ble 8, we note our baseline system (#1) scored 11.11 cased
BLEU on dev2018. Next, we utilize the sentence-weighting
feature of Marian that allows each sentence to be assigned a
“weight” to determine how much of an effect each will have
during training. A score of 1.0 is assigned to sentences from
the Basque–English portion of the training corpus, French–
English and Spanish–English sentences are assigned a score
of 0.5. The system trained with these weights (#2) shows a
+2.41 increase in BLEU.

Using the same data as system #2, we train a system that
uses BEER [22] as the validation metric. While we have seen
performance gains using this tactic in other work, here the
resulting system(#3) performs -0.75 BLEU worse than the
previous system.

Next, we consider averaging and ensembling of models.
We take the 4-best model checkpoints from system #2 and
average them into a single model, resulting in system #4’s
+0.87 BLEU gain over system #2.

Lastly, we decode with an ensemble of system #4 and a
model averaged from the four best checkpoints of system #3,
resulting in a BLEU score of 15.45. This system (#5) was
then submitted as our entry to the low-resource MT task.

3.2.2. Backtranslated training corpus

As a contrast, we use the “backtranslation” corpus to train a
shallow “s2s” Marian system that translates English, Span-
ish, and French into Basque. We then translate a 2 million
line portion of the English monolingual corpus described in
3.1 into something resembling Basque and then use the com-
bination of the two in conjunction with the small amount of
provided Basque–English data to train two Marian “bi-deep”
[20, 21] systems, both using BEER [22] as the training val-
idation metric. These systems are listed as #6 (without pre-
trained word embeddings) and #7 (with pretrained word em-
beddings) in Table 8. We note that pretrained word embed-
ding system scores -1.46 cased BLEU lower than the equiv-
alent system without the pretrained embeddings, counter to
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Table 8: Results for various MT systems decoding Basque–
English dev2018 measured in cased BLEU. Our submission
system is highlighted in bold text.

# System BLEU
1. marian-eseufr-trans 11.11
2. marian-eseufr-trans-weight 13.52
3. marian-eseufr-trans-weight-beervalid 12.77
4. marian-eseufr-trans-weight-avg4 14.39
5. marian-eseufr-trans-weight-avg4X2 15.45
6. marian-bt-bideep-beervalid 11.23
7. marian-bt-bideep-preembed-beervalid 9.77
8. moses-bt-bpe 14.06

our experience with our WMT18 systems.

3.3. Moses System

Using both the provided Basque–English data and the back-
translated corpus outlined in Section 3.2.2 we train a Moses
system in a similar vein to the one employed in our WMT18
submission: This system employed a hierarchical reordering
model [23] and 5-gram operation sequence model [24]. The
5-gram English language model was trained with KenLM on
the constrained monolingual corpus from our WMT15 [25]
efforts. Our uniform BPE model used was applied to the par-
allel training data, but the languagemodelling corpus used the
Russian–English joint BPEmodel from ourWMT18 submis-
sion, possibly degrading performance due to this BPE mis-
match. System weights were tuned with the Drem [26] opti-
mizer using the “Expected Corpus BLEU” (ECB) metric.

This system, listed as #8 in Table 8 performs better than
the two other Marian-based backtranslation systems (#6 and
#7).

3.4. Results

Results of various systems described in the above sections
are listed in Table 8. Our final submission system (#5) is
highlighted in bold text.

4. Conclusions

Our experimentation this year show positive results in spoken
language translation, especially our ASR component. How-
ever, for the low-resource MT task, we note that various ap-
proaches we have previously employed with great effect in
high-resource conditions need further adaptation and refine-
ment when scaling down to extremely low-resource condi-
tions.

Opinions, interpretations, conclusions and recommendations are those
of the authors and are not necessarily endorsed by the United States Gov-
ernment. Cleared for public release on 4 Oct 2018. Originator Reference
Number: RH-18-118975 Case Number: 88ABW-2018-4946.
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Abstract

This paper describes KIT’s submission to the IWSLT
2018 Translation task. We describe a system participating
in the baseline condition and a system participating in the
end-to-end condition. The baseline system is a cascade of
an ASR system, a system to segment the ASR output and a
neural machine translation system. We investigate the com-
bination of different ASR systems. For the segmentation and
machine translation components, we focused on transformer-
based architectures.

1. Introduction
The Karlsruhe Institute of Technology participated in
the IWSLT 2018 Evaluation Campaign with systems for
English→German Speech Translation task. We submitted
system to both conditions: the baseline condition and the
end-to-end condition.

The submission to the baseline condition is based on the
cascaded approach described in [1]. In this evaluation cam-
paign, we investigated the combination of different ASR sys-
tems. Furthermore, we investigated the use of transformer-
based models.

This paper is structured as follows. In Section 2, we de-
scribe different speech recognition systems we employed in
the campaign and how we combined them. Afterwards, we
give a detailed description of the segmentation approach in
Section 3 and the machine translation system in Section 4.
Finally, in Section 5 we describe the end-to-end speech trans-
lation model. At the end of the paper we report the results
and finish with a conclusion.

2. Speech Recognition
In this year’s evaluation, we built three different types of au-
tomatic speech recognition systems. All the systems were
trained using the data from the TED-LIUM Corpus version 2
[2].

2.1. Hybrid Model

Different from previous years, this year we built only one
single HMM-based hybrid model for the speech recogni-
tion task. The hybrid acoustic modelling is constructed by

stacking 5 LSTMs layers of 320 units, a projection layer
of 200 units and a softmax layer to classify 8000 context-
dependence phone (CD-Phone) states. As traditional ap-
proach, we used Viterbi forced alignment to provide CD-
Phone state labels for the training data and the acoustic model
was trained using only cross-entropy loss function.

For model training, we use SGD with an initial learning
rate of 0.004 for 8 epochs and degrade it with a factor of 0.8
for other 8 epochs. We use a momentum term of 0.9 while
dropout is set to 10%. Only 40 features of Mel-filterbank
coefficients are fed into the LSTMs network every timestep,
we did not employ any further speaker adaptation features.

After the model was successfully trained, we performed
the traditional beam search decoding with the employment
of the 4-gram language model. We used Janus Recogni-
tion Toolkit (JRTK) [3] as the decoding framework while the
language model is built by Cantab research group [4] from
WMT data.

2.2. CTC Model

Our CTC-based [5] ASR model is similar to the system de-
scribed by [6]. The input to the model are 40-dimensional
Mel-filterbank coefficients. We used every third speech fea-
ture of our input sequence and randomly chose the start off-
set during training, which has the advantage of a lower input
sequence length. We trained the model to predict Byte-Pair
Units, also referred to as Byte-Pair Encoding (BPE) [7].

The CTC-based model consists of four bidirectional
LSTM layers with 400 units in each direction followed by
a softmax layer. The size of the softmax layer depends on
the number of BPE units we created. We used a dropout rate
of 0.25 for all LSTM layers. We trained two models based
on BPE units with 300 (small model) and 10,000 (big model)
merges, respectively.

We used SGD with a learning rate of 0.0005 and a mo-
mentum term of 0.9 for training. The learning rate is halved
whenever the validation token error rate does not decrease by
more than 0.1%. We first trained the small model and initial-
ized the parameters of the big model’s BiLSTM layers using
the smaller model’s ones. We decoded the model by greedily
selecting the most likely output at each time step.
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2.3. Encoder-Decoder Model

Our attentional ASR model follows the listen-attend-spell [8]
architecture and is similar to the system described by [9].
The model is implemented with XNMT. Compared to a con-
ventional neural machine translation architecture, we replace
the encoder with a 4-layer bidirectional pyramidal encoder
with a total downsampling factor of 8. The layer size is set to
512, the target embedding size is 64, and the attention uses an
MLP of size 128. Input to the model are Mel-filterbank fea-
tures with 40 coefficients. For regularization, we apply vari-
ational dropout of rate 0.3 in all LSTMs, and word dropout
of rate 0.1 on the target side [10]. We also fix the target em-
bedding norm to 1 [11]. For training, we use Adam [12] with
initial learning rate of 0.0003, which is decayed by factor 0.5
if no improved WER is observed. To further facilitate train-
ing, label smoothing [13] is applied. For the search, we use
beam size 20 and length normalization with the exponent set
to 1.5.

2.4. Rover

To combine the outputs of the different ASR systems, we
used ROVER [14]. It operates on the final system output, the
CTM-files. Multiple merging strategies exist to combine the
outputs based on a majority vote. It is, e.g. possible to take
confidences into account to further fine-tune the merging pro-
cess. The key idea of ROVER is that different systems tend
to produce different errors, but that no two systems produce
the same error. The more different the systems those outputs
are combined are, the better the result will be. Systems being
very similar on the other hand will not benefit much from the
system combination as they are likely to generate the same
errors.

We here combined three different architectures: a tradi-
tional HMM-based ASR system, a RNN/CTC based one and
an encoder-decoder based one. Hence, combining the out-
puts improved the WER due to the diversity of the system
architectures.

3. Segmentation
Automatic speech recognition (ASR) systems typically do
not generate punctuation marks or reliable casing. Using the
raw output of these systems as input to MT causes a perfor-
mance drop due to mismatched train and test conditions. To
create segments and better match typical MT training con-
ditions, we use a monolingual NMT system to add sentence
boundaries, insert proper punctuation, and add case where
appropriate before translating [15].

The idea of the monolingual machine translation system
is to translate from lower-cased, unpunctuated text into text
with case information and punctuation. Since we do not have
any information about the sentence boundaries when insert-
ing the punctuation and case information, we also remove
them from the training data. Therefore, in the first step of
the pre-processing, we randomly segment the source corpus

of the training data into chunks of 20 to 30 words. Based
on this randomly segmented corpus, we build the input and
output data for the monolingual translation system.

For the input data, we remove all punctuation marks and
lowercase all words. Since we will get lower-cased input,
we cannot use the same byte-pair encoding [7] as for the ma-
chine translation system. Therefore, we train a separate byte-
pair encoding on the lower-cased source data with a code size
of 40k. To summarize, the source sequence consists of lower-
cased BPE units without any punctuation.

For the target side, we do not want to change the words
in the output sentence, but only add case and punctuation in-
formation. Therefore, we replace the sentence by features
indicating case with punctuation attached. Every word is re-
placed by a letter U or L, whether it is upper-cased or lower-
cased. Furthermore, punctuation marks following the word
are directly attached to the letter.

At test time, we follow the sliding window technique de-
scribed by [16]. Therefore, we created a test set with seg-
ments of length 10 starting with every word on the input
data. This means, that except for the beginning and the end of
the document, every word occurs ten times, at all positions
within the segment. This of course dramatically increases
the number of sentences in the test data. In the second step,
we generate the target features by applying the monolingual
translation system. In a post-processing step, we case the
word as it most frequently occurs in the output. We insert
punctuation marks, if there is at least one punctuation mark
after the word in one of the 10 segments containing this word.
If different punctuation marks are predicted, we take the most
frequent one. Finally, if the punctuation mark is an end of
sentence punctuation mark {”.”,”!”,”?”}, we also start a new
segment. The segmented test data with case and punctuation
information is passed on to the machine translation system.

This year, we used a transformer-based NMT system to
generated the punctuation marks.1. For the encoder and de-
coder we used 12 layers each using a hidden size of 512 and
an inner size of the transformer model of 1024. We applied
dropout and trained the models using adam. We first trained
the system on the source side of the parallel data. We used
the EPPS corpus, NC corpus and a filtered version of the
paraCrawl corpus. In a second step, we fine-tuned the model
on the TED corpus.

4. Machine Translation
Data preprocessing Our training data, while consisting the
TED Talks provided by the evaluation campaign, also in-
cludes the following corpora: Europarl (1.8M sentences),
News Commentary(280K), Rapid (1.2M), Common crawl
(2.2M), the backtranslation data from University of Edin-
burgh (3.M) and the Paracrawl data (30M). The Paracrawl
data is filtered by training a translation model to identify sen-
tences with low likelihood. The final data size is around 36M

1https://github.com/isl-mt/NMTGMinor
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sentences, with basic preprocessing steps being truecasing,
tokenizing, and BPE splitting with BPE size of 40K. The
development set is newstest2013 to newstest2016 from the
WMT datasets for training the big models. In the adaptation
phase, we use the TED talks of dev2010 to validate our mod-
els.
Modeling Our translation models are constructed with self-
attention encoders and decoders, known as the Transformer
networks, following the work of [17]. In this work, we ex-
tend the depth of the standard Tranformers, thanks for the
residual design combined with layer normalization schemes
allowing gradients to flow smoothly. Thanks to the huge
amount of data as shown above, we were able to train models
up to 32 blocks and still yield meaningful improvement.
Our hyper-parameters of the Transformer models (except
depth) follow the Base configuration of the original work.
The layer size for hidden layers is 512, while the the in-
ner size of feed-forward network inside each block is 2048.
The attention layers (including self-attention and attention
between decoders and encoders) are multi-head attention lay-
ers with 8 heads. We also added label smoothing to regular-
ize the cross-entropy loss. For the network depth, we trained
models consisting of 4, 8, 6, 12, 16 and 32 blocks (for both
encoder and decoder). Not only are deep models very de-
manding in terms of computation, they also consume a con-
siderate amount of memory. In order to make training fea-
sible, we used the checkpointing technique [18] by employ
re-computation of the network activations during the back-
ward pass to reduce the memory cost for the models.
Training procedure We group mini-batches to fill up our
GPU’s memory depending on the network size. 12-layer
models can fit the memory with batch size containing 2048
words, while deeper models requires batch size reduction to
avoid out-of-memory. For updating the networks’ param-
eters, we accumulate gradients up to 25000 target words
before doing an update. The learning rate is scheduled as
in [17] but we doubled the initial learning rate and extend the
warm up duration to 8000 steps. All models including the
32−layer config train with 100000 updates. Each model, ex-
cept the 32-layer one has an additional variation with dropout
(added to the residual connection and the inner feed-forward
hidden layers).
Domain adaptation After training on all datasets, we fur-
ther fine tune each model on the TED Talks specifically.
Such technique is known to improve the model’s perfor-
mance greatly on the specifically adapted domain [19].
Noise adaptation Since the ASR output is fundamentally
different than the collected natural data, we apply a noise
model [20] on the TED training data which randomly replace
words by sampling. The model is further fine-tuned on the
noisy data in the same fashion as domain adaptation.
Final models The output is generated from the ensemble of
five models: 12-layer, 12-layer with dropout, 16-layer, 16-
layer with dropout and 32-layer.

5. End-to-End Models
We extend the attentional ASR described under Section 2.3
to perform translation by replacing the source-language tar-
get tokens by tokens from the target language. We use a re-
fined encoder that performs downsampling to make memory
requirements manageable and adds depth for improved ac-
curacy, following one of the variants described by [21]: we
stack several blocks consisting of a bidirectional LSTM, a
network-in-network (NiN) projection, and batch normaliza-
tion. After the last block, we add a final bidirectional LSTM
layer. NiN denotes a simple linear projection applied at every
time step, performing downsampling by concatenating pairs
of adjacent projection inputs.

For better results and to be able to include the TEDLIUM
corpus in the training, we devise a multi-task training strat-
egy that trains auxiliary models on related tasks while shar-
ing a subset of the parameters with the main ST model. Pre-
cisely, besides the main ST task we include an ASR task that
shares encoder and attention, an MT task that shares attention
and decoder, and an transcript auto-encoder task that shares
only the attention. The ASR task is trained on the TEDLIUM
corpus, whereas the other tasks are trained the respective sub-
set of the 3-way TED corpus provided for the IWSLT 2018
evaluation. It should be noted that we did not put any efforts
into cleaning this data, despite it being relatively noisy.

6. Experiments
We evaluated the models presented in the last section on the
provided test sets. Note that for all experiments we used the
audio segmentation tool [22] provided in the IWSLT docker
container.

6.1. Cascaded

Our experiments involve different configurations regarding
three main components in the cascade. For the ASR compo-
nent, we present three different setups: the ROVER com-
bination of two CTC and one Encoder-Decoder systems
(dubbed as ROVER-1) and finally the ROVER combination
of CTC,Encoder Decoder and Hybrid systems (dubbed as
ROVER-2).
For the text segmenter, we showed the models trained on
two data sizes (small and large), together with the larger
models being adapted with domains and adapted with noise.
Similarly, we showed the Translation models with additional
adaptation towards domain and noisy inputs.

ASR WER
ROVER-1 21.2%
HYBRID 17.6%
ROVER-2 16.7%

Table 1: Word-Error Rate of different ASR configurations on
the tst2014 English set.
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ASR SEG MT BLEU
ROVER-1 Small Transformer 13.77
ROVER-1 Small D. Adapted 16.26
ROVER-1 Large D. Adapted 18.2
ROVER-1 D.Adapted D. Adapted 19.15
ROVER-1 N.Adapted N.Adapted 19.32
HYBRID D.Adapted N.Adapted 21.33
HYBRID N.Adapted N.Adapted 21.41
ROVER-2 D.Adapted N.Adapted 22.61
ROVER-2 N.Adapted N.Adapted 21.35

Table 2: SLT English→German results. We report the BLEU
scores (after re-segmentation) on the tst2014 test data. Note:
Noise-adapted models (N.Adapted) were already adapted to
the TED domain (D.Adapted) previously.

Regarding the whole cascade performance, as can be
seen from Table 2, the score dramatically increased with the
help of domain adaptation (2.5 BLEU points improved from
adapting the translation model, and an additional 3.2 points
from having a stronger adapted segmentation model (Large
into D.Adaptation). Additional noise-adaptation on the seg-
mentation and translation models improves the result by 0.2.
We can also see that the HYBRID ASR model is much better
than the ROVER-1 configuration, thanks to 17% improve-
ment in word error rate on the English speech input. As a
result, the whole cascade is improved by significant 3 BLEU
points. The best ASR configuration - ROVER-2 - finalized
the best result at 22.61. Notably, we have to use the seg-
mentation model configuration without noisy-adaptation to
achieve this, the counterpart fell short by 1 BLEU point.

6.2. End-to-End

We conduct preliminary experiments on the well-established
Fisher Spanish-English Speech Translation Corpus [23] to
confirm the model’s accuracy. We obtain 35.3 BLEU points
on Fisher/Test, 2.8 points better than a cascaded model us-
ing a similar architecture and the same training data. We
then train the end-to-end model described in Section 5 on
TEDLIUM2 for the ASR task, and on IWSLT2018’s pro-
vided end-to-end TED data for the remaining tasks. We test
the resulting model on the tst2013 dataset and obtain 10.3
BLEU points without casing, and 9.3 BLEU points case-
sensitive scoring. This is still much worse than the cascaded
models described above, despite the promising preliminary
results. As potential reasons we identify the rather noisy pro-
vided training data, mismatch between the manual segmen-
tation at training time and the automatic segmentation at test
time, and the lack of additional data (beyond TED) included
in the training.

7. Conclusions
In this evaluated we build a cascaded speech translation
model as well as an end-to-end model for the English to Ger-

man Speech Translation task.
For the cascaded approach, we see that the combination

of several ASR systems reaches the best performance. Fur-
thermore, we get the best single performance by using a hy-
brid model.

For the end-to-end model, we cannot achieve the same
performance as the cascaded approach. One challenge is the
integration of the significantly larger data available for the
cascaded models.
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Abstract

This work describes the En→De Alibaba speech translation
system developed for the evaluation campaign of the Interna-
tional Workshop on Spoken Language Translation (IWSLT)
2018. In order to improve ASR performance, multiple ASR
models including conventional and end-to-end models are
built, then we apply model fusion in the final step. ASR pre-
and post- processing techniques such as speech segmenta-
tion, punctuation insertion, and sentence splitting are found
to be very useful for MT. We also employed most techniques
that have proven effective during the WMT 2018 evaluation,
such as BPE, back translation, data selection, model ensem-
bling and reranking. These ASR and MT techniques, com-
bined, improve the speech translation quality significantly.

1. Introduction
In this paper we describe the Alibaba speech translation sys-
tem that was built as part of the Speech Translation Task in
IWSLT 2018. The task involved translating English audio to
German text in which English audio are from lectures and
TED talks. Our system employs a pipeline approach that in-
cludes an automatic speech recognition system (ASR) and a
machine translation (MT) system.

The paper is organized as follows: Section 2 presents the
ASR system used, along with a description of conventional,
end-to-end, and fusion systems. Section 3 focuses on the MT
system in which we describe preprocessing, data augmenta-
tion, noisy input translation, ensembling, and reranking com-
ponents in detail. We present our concluding remarks in Sec-
tion 4.

2. Automatic Speech Recognition
In a pipeline-based speech translation system, ASR is the
most front-end module. In order to get reliable transla-
tion of quality, it is critical to obtain ASR transcription
as accurate as possible. To start, we build several con-
ventional pipeline-based ASR systems using deep neural
network/hidden Markov model (DNN/HMM) framework.
In the DNN-HMM framework, we employ several DNNs

* Equal contribution

with different structures including fully-connected DNN
(FDNN), time-delay deep neural network (TDNN) [1, 2],
and latency-controlled bidirectional long short-term memory
(BLSTM) [3].

Our final goal is to build end-to-end speech translation
system, that is, we need to simplify the model-building pro-
cess of conventional pipeline-based ASR system by con-
structing complicated modules with a single DNN architec-
ture or in a data-driven learning method. Thus we also em-
ploy an end-to-end ASR system which is based on a hy-
brid connectionist temporal classification (CTC) [4, 5] and
attention based encoder-decoder [6] architecture. Finally, we
combine the output of different ASR systems to boost the
final ASR performance.

During the development of our system, all acoustic mod-
els are trained on TED dataset together with the training
datasets provided by the organizer. We noticed that the or-
ganizer’s segmentation of the talks/lectures is not quite ac-
curate, e.g. some sentences are not properly split. There-
fore, we employ our own model-based voice activity detec-
tion (VAD) module to split the talks/lectures into utterances
before ASR decoding. For the model-based VAD, the recur-
rent neural network (RNN) model is used to train and classify
each frame into non-speech or speech. The RNN based VAD
model was trained by using TED and other speech corpus,
and by using Alibaba’s VAD segmentation, it can get bet-
ter performance when comparing with Organizer’s segmen-
tation. Table 2 listed the comparsion.

Table 1: Configuration of DNNs in DNN-HMM acoustic
models.

System Input feature #Dim Network context

FDNN FBank+Pitch 80 {-5, 5}
TDNN MFCC+ivector 40+100 {-13, 9}
BLSTM FBank+Pitch 80 {-8, 8}
#Dim: number of feature dimension
{-L, R}: L frames in the left context and R frames in the
right context
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Table 2: WER (%) of different ASR systems on IWSLT 2013 and 2015 dataset using organizer’s and Alibaba’s segmentation.

System Organizer’s segmentation Alibaba’s segmentation
tst2013 tst2015 Avg. tst2013 tst2015 Avg.

CTC (baseline) 26.1 37.6 31.9 - - -

1. FDNN/HMM 22.9 31.6 27.3 19.4 28 23.7
2. TDNN/HMM 13.6 25.5 19.6 11 23.1 17.1
3. BLSTM/HMM 13.6 26.3 20.0 10.6 22.3 16.5

4. CTC/Attention 26 33.1 29.6 23 29.8 26.4

1+2+3+4 - - - 10.3 22.3 16.3
2+3+4 - - - 8.6 21.7 15.2

2.1. Conventional ASR system

In the conventional DNN-HMM framework, DNNs are des-
ignated to predict the alignments derived from a GMM-
HMM based acoustic model, given different input fea-
tures. As shown in Table 1, FDNN and BLTSM take 80-
dimensional filter bank feature vectors (FBank) and pitch
feature as input feature while TDNN take 40-dimensional
Mel-frequency cepstral coefficients (MFCCs) appended with
100-dimensional iVector as input feature. These DNNs take
different lengths of context. FDNN takes one frame together
with 5 frames from its left and right context as the input win-
dow, i.e. context span is {-5, 5}. TDNN follows the setting
in [2] which takes {-13, 9} as the context span. BLSTM
takes context span {-8, 8}.

We train a 4-gram LM using all the allowed text. The 4-
gram LM obtained by linearly interpolating a number of LMs
that are trained using all the TED transcripts provided by the
organizer, all the text in the WMT18 CommonCrawl corpus,
some sentences selected from the WMT18 news, WMT18
news discussion and OpenSubtitles2018 corpora. We use
cross-entropy based data selection to select sentences from
the corpora that are close to the TED transcripts. The LM
interpolation weights are optimized on all development data.

2.2. End-to-end ASR system

We employ a hybrid CTC/Attention architecture [6] in our
end-to-end ASR system. This system consists of a BLSTM-
based encoder, a CTC output layer and an attention decoder.
The CTC output layer and the attention decoder takes the out-
put of encoder and predicts the corresponding letters. That
is, the end-to-end system is charactor level system. Please
refer to [6] for more system details. And in Table 2, there are
large differences between CTC/attention based ASR system
and TDNN or BLSTM based ASR system. The reasons lie in
that (1) the scale of speech training data. The CTC/attention
based ASR need more large scale of traning data to get better
performance comparing with TDNN or BLSTM based ap-
proach; and (2) the weak language model for CTC/attention
based ASR system.

2.3. Fusion of ASR output

With all the aforementioned ASR systems, we have a set of
ASR output of each test set. The WER of the ASR systems
are summarized in Table. 2. We utilize ROVER [7] to fuse
the output from different ASR systems. By enumerating all
combinations of each ASR system, we select the output from
the combination of the TDNN/HMM, BLSTM/HMM and
hybrid CTC/attention based end-to-end systems, since this
combined output gives the lowest WER. There are so big
differences between them in model structure and used fea-
tures for TDNN, BLSTM and CTC/attention systems, and
therefore, after fusing between them, it can get better perfor-
mance.

3. Machine Translation
3.1. MT baseline

In this section, we describe how our MT system has been
developed. All our models are based on the transformer ar-
chitecture in [8]. We start with the TED corpus, speech-
translation TED corpus, and WMT18 data that are relevant
to the speech translation domain. The total size of the bilin-
gual corpus is 6.3 million sentence pairs. We use Marian
toolkit for all experiments [9] and our development set in-
cludes dev2010 and tst2010-2015. The baseline architecture
of Marian mainly follows the default setting for transformer
NMT except for a 6-layer transformer encode-decoder, a 0.1
label smoothing, and 0.1 dropout between transformer layer.
For parameter optimization, we use synchronized ADAM
[10] with learning rate 0.0003, and set up the number of
noam warm-up steps as 16,000.

3.2. Preprocessing

The training data is preprocessed following standard proce-
dure. We first use the scripts in moses toolkit1 for punctu-
ation normalization, tokenization and lowercasing. After-
wards, we jointly learn and apply the byte pair encoding2

for English and German together. Figure 1 shows a detailed
1https://github.com/moses-smt/mosesdecoder
2https://github.com/rsennrich/subword-nmt
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Figure 1: Performance of BPE operations including joint-bpe
16k, 32k, 48k, 64k, 80k, 96k, and shared-bpe 24K and 32K
on our development set.

comparison of different BPE operations on our development
set. We observe that joint bpe with 32K vocabulary performs
best in this case and it is our final BPE code size. In the end,
sentences longer than 100 tokens are removed.

Generally, the ASR raw output is a long stream of words
with no punctuation, capitalization or segmentation markers.
[11] shown that using various types of text segmenters be-
tween ASR and MT modules can improve speech translation
quality. Our ASR system performed audio segmentation,
punctuation and capitalization prediction. We use spaCy3

to segment processed ASR transcription into shorter chunks.
By using text segmentation we observed BLEU score gains
between 0.2 and 1.0, depending on different ASR and MT
systems.

For sentence boundary detection and punctuation inser-
tion model, we experiment with a 3 layers LSTM for se-
quence tagging, and 3-gram KenLM[12] for additional scor-
ing. In prediction phrase, we store some token in buffer as
the foregoing context which is useful in real time prediction.
Silence time in ASR is also used for sentence boundary de-
tection. We also trained single layer self attention sequence
tagging model and a bi-directional self attention LM. And we
found it got much higher comma F1 score, but a litter lower
period F1 score. This approach was not used in the final re-
sult and we will do more experiments in our future work.

3.3. Data Augmentation

In order to obtain a high quality domain related training cor-
pus, we exploit the algorithm described in [13, 14], aim-
ing at selecting sentence pairs from large out-domain corpus
that are similar to the target domain. In our experiments,
the 200K TED talks data is considered as in-domain corpus,
and all the other parallel corpora provided are combined as a
large out-domain corpus. Two 3-gram language models are
trained over the source and target side of the in-domain cor-

3https://spacy.io/

pus, respectively. Then, another set of two 3-gram language
models are trained, whose training data is randomly selected
from the out-domain corpus, with size being similar. Thus,
each sentence pair from out-domain corpus is scored by the
bilingual cross-entropy difference model. Finally, we sort all
sentence pairs and select top ranked sentences pairs. Our ex-
periments show that with different amount of additional data,
we obtain BLEU gain on the development set between 0.4 to
1.8.

3.4. Noisy input translation

Though our transformer translation system is applied to
the post-processed speech recognition outputs, the insertion,
deletion and substitution errors still cannot be removed. Fol-
lowing the idea in [15, 16], we use the corrupted inputs to
train a robust neural machine translation model. Since we
observe that the insertion error is rare in our ASR system,
only the deletion and substitution noises are considered for
the source sentences of the regular parallel training data. In
this way, the gap between training data and testing ASR out-
put will become potentially smaller.

Basically, we first randomly delete the token of the source
sentence with a small probability (0.01 and 0.02 are selected
in our experiments by cross-validation). Specifically, we also
pre-define a functional-words list including 120 tokens with
number of letters less than 5, and assign a doubled deletion
rate for them. Notice that we train several deletion-noisy
models alone without any other corrupted strategy for further
ensemble. In our experiments, the single model trained with
deletion noise can increase the case insensitive (CI) BLEU
for at least 0.5 BLEU point over the baseline on the ASR
output.

Additionally, we attempt to introduce the substitu-
tion noise by randomly replacing the token with its
pronunciation-like candidates with a small probability. By
trying different substitution rate, we empirically found that
the substitution noise model achieved no significant improve-
ment over deletion noise model. One possible solution is to
use the adaptive substitution rate of each token, estimated
with the maximum likelihood in the ASR model. We will
leave this as the future work.

The third strategy for noisy training is punctuation sim-
ulation. We randomly spare 30% of the regular parallel
corpus and remove all punctuations from the source side,
then annotate/re-generate the same data with the tool used
in the ASR post-processing. We add the punctuation noisy
corpus back and train our model, and empirically observe
an improvement of at least 0.5 BLEU point gain compared
with baseline as well. The punctuation simulation and dele-
tion/substitution noise are typically not combined, since the
underlying true noise comes from the ASR system and our
two manually designed noising systems may have a large
bias. Therefore, we decide to apply them separately to in-
crease the diversity of our models in ensemble.
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3.5. Refinements

3.5.1. Ensemble decoding

Model ensemble is a widely used technique to boost the per-
formance of a MT system, which is to combine the prediction
of multiple models at each decode step. We adopt the ensem-
ble method GMSE (Greedy Model Selection based Ensem-
ble) detailed in [17].

The candidate single models are first sorted as a list ac-
cording to their performance on the development dataset.
Another two model lists are maintained during the ensem-
ble, named “keep”, “redemption”. For each iteration, a can-
didate model could be either drawn from the beginning or
the end of the candidates list with probability p or preserve,
or the “redemption” list with probability predempt, where
p + preserve + predempt = 1. Then, the selected model is tem-
porarily concatenated to the “keep” list. If the evaluation of
the current model ensemble achieves a better BLEU score,
the model is permanently added to the “keep” list. Other-
wise, it will be put into the “redemption” list. Notice that
one model from the “redemption” list can only be redeemed
once, after which it is withdrawn permanently from the can-
didates.

In order to achieve better ensemble performance, we in-
crease the diversity of our candidate models by introducing
another 8 training schedules and further obtain about 200 sin-
gle checkpoints. The greedy nature of the GMSE algorithm
makes the search feasible in an acceptable time frame. In
summary, we list the different training schedules as follows.

1. 10 million training corpus is selected by BPE level lan-
guage models.

2. 8 million training corpus is selected by word level lan-
guage models.

3. Adding another 3 million back-translation data to the
original parallel corpus.

4. Training with deletion/substitution noise.

5. Training with punctuation simulation noise.

6. Fine-tuning with the 200K TED talks in-domain data.

7. Fine-tuning with the punctuation simulation data.

8. 7-layer transformer NMT model.

Due to the time limitation, we cannot do all the ablative
experiments on listed strategies. However, we can still report
the best single model and best ensemble result on our ASR
output in Table 3. Note that our development set is the com-
bination of tst2013 and tst2015, we did not test our model on
these two dataset separately.

Table 3: Improvement with ensemble

tst2013 + tst2015

best single model 22.96
best ensemble 23.84

3.5.2. Reranking

Besides building multiple ensemble systems with different
random initialization and configurations, we also build and
optimize the n-best list reranker. We follow the approach in
[17] in which several neural machine translation models and
language models have been experimented with. The n-best
list reranker involves the following steps

• Build and optimize neural MT models including single
models, ensemble models, and models with different
configurations such as beam size. To improve diver-
sity, we also use the right-to-left and target-to-source
models.

• Build ngram language models from in-domain and
out-of-domain data using the data selection method
similar to [17, 18].

• Apply the the greedy feature selection based reranking
method in [17] to train the reranker. To deal with over-
fiting, we use the tuning set that contains both manual
transcription and our ASR transcription.

Our experiments show that depending on different set-
tings the reranker typically obtains improvements between
0.1 to 0.4 BLEU point over the best system.

Additionally, we experiment with the multi ASR inputs
for reranking. The main motivation is to directly exploit
strengths of different ASR systems into the reranking sys-
tem. Out initial results show that the multi ASR inputs does
not outperform the input for the ASR fusion output.

3.5.3. Recaser

Since the lowercased corpus are applied to train our MT sys-
tem, an additional post-processing recaser model is neces-
sary to obtain the truecased (or capitalized) German transla-
tion output. In principle, we exploit the combination of the
moses4 SMT recaser model and the Char-RNN based neu-
ral recaser model [19]. The SMT recaser model essentially
trains a word-to-word translation model and a cased language
model without reordering. Unlike the word-level approach,
the neural recaser model restores the case information at the
character-level, reducing the recasing problem to a sequential
binary classification task. No special treatment is required
for mixed cased words.

The final combination rule is that for every single word,
if the SMT recaser and the neural recaser reach a consensus

4http://www.statmt.org/moses/?n=Moses.SupportTools
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on the final recasing output, we will accept it; if they have a
disagreement, we will always capitalize that word. This strat-
egy will result in a combined recaser model which is slightly
better than any other one.

4. Conclusions
The IWSLT 2018 Speech Translation task provided the op-
portunity to compare different speech translation approaches
using shared datasets and standardized evaluation metrics.
Table 4 shows our submission results on the IWSLT 2018
official test set.

Table 4: IWSLT 2018 final evaluation results on contrastive
and primary submissions

con.1 con.2 primary con.3

BLEU 22 22.16 22.36 22.5
TER 63.44 63.52 63.03 63.03
BEER 52.47 52.69 51.77 52.64
CharTER 59.56 57.54 69.26 57.76
BLEU(ci) 23.97 24.14 24.23 24.3
TER(ci) 60.44 60.41 60.22 60.15

Our participation in this task revealed three important as-
pects of speech translation that we regard as important for
the future.

First, our experiments indicated that the speech segmen-
tation and transcription post processing, by themselves, can
make a big differences on transcription quality as well as
translation quality. Furthermore, these components not only
improve WER and BLEU scores, in live speech translation
scenario they also greatly improve user experience.

The second aspect relates to the importance of noisy in-
puts. There are many types of noises in speech translation
scenario. For example noise come from speech audio, tran-
scription errors, and the nature of spoken language. Our ex-
periments show that by modeling transcription errors directly
in the neural MT (NMT) training, we obtained consistent im-
provement. It indicates that the NMT model becomes more
robust against errors of our ASR system. Also, if we com-
pare statistical machine translation (SMT) technique, we find
SMT is generally more robust to noises than NMT. It is prob-
ably because SMT models are built on probability distribu-
tions estimated from many occurrences of words and phrases,
therefore any unsystematic noise in the training only affects
the tail end of the distribution.

The third aspect is the importance of model engineering.
In the statistical machine learning, the best model is typi-
cally from through several rounds of feature engineering. In
the NMT context, we see that our best model is also from
many steps of model engineering and refinements. Given the
availability and good scalability of ASR and MT toolkits to-
day, it is tempting to throw as much model configurations
as possible and let the built-in mechanisms of these learning
algorithms figure out which one is the best. However, the

strategy has its own limitations, and, in conjunction with the
limited availability of the labeled data, can easily produce
models that are under-performing on blind test sets.
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Abstract
We present our submission to the IWSLT18 Low Re-

source task focused on the translation from Basque-to-
English. Our submission is based on the current state-
of-the-art self-attentive neural network architecture, Trans-
former. We further improve this strong baseline by exploiting
available monolingual data using the back-translation tech-
nique. We also present further improvements gained by a
transfer learning, a technique that trains a model using a
high-resource language pair (Czech-English) and then fine-
tunes the model using the target low-resource language pair
(Basque-English).

1. Introduction
Despite becoming the current dominant approach in the
field of machine translation (MT), neural machine translation
(NMT) [1] systems still perform poorly in certain scenar-
ios. One of them is learning to translate between language
pairs where only a small amount of parallel data is avail-
able. Under these circumstances the NMT model quickly
overfits and its performance plummets when translating sen-
tences not seen during training. As observed in [2], with
small parallel data, NMT performs much worse than the pre-
vious approach of phrase-based MT.

There are situations where the ability to learn an MT
model of a reasonable quality given only a small amount of
training data can be crucial. For example, when a crisis oc-
curs in a region where an under-resourced language is spo-
ken, a quick deployment of an MT system translating from
or to that language can make a huge difference in the impact
of the provided support [3].

In this paper, we describe the CUNI submission to the
IWSLT Low Resource task for translating from Basque-to-
English in the domain of TED talks. Our submission is based
on the recently introduced self-attentive network architecture
called Transformer [4]. We improve the performance of this
model by exploiting the English in-domain monolingual data
using the back-translation technique [5]. We achieve further
improvements via transfer learning. Transfer learning [6, 7]
consists of training a “parent” (high-resource) model first and
then continuing the training on the “child”, low-resource,
parallel data as a means of model adaptation. Furthermore,

we combine several models saved at training checkpoints by
simply averaging the weights (“model averaging”) as a sub-
stitute of model ensembling.

The structure of the paper is the following. In Section 2,
we describe the method of transfer learning followed by the
description of back-translation in Section 3. The model de-
scription is presented in Section 4 and the dataset overview
in Section 5. Section 6 details the results achieved by our
systems. Section 7 discusses other works in the area of
low-resource translation systems. And finally Section 8 con-
cludes the paper.

2. Transfer learning
Transfer learning is based on the observation that neural ma-
chine translation model that is first trained on the parallel
data of a high-resource language pair can be adapted to a
lower-resource language pair. The two languages can have a
linguistic relation, however, transfer learning works even for
unrelated languages [7].

The method starts by first training the parent model un-
til it reaches the best possible performance or until a fixed
number of gradient updates is performed. This model is then
adapted by switching the training dataset from the parent pair
to the low-resource child pair. During this transition, we do
not change any hyperparameters nor the learning rate.

The transfer learning method does not need any modifi-
cation of the existing NMT pipeline. The method only relies
on a single condition: the vocabulary has to be shared across
all the languages in the parent as well as child language pairs.

We construct the shared vocabulary using subword to-
kens, namely wordpieces [8], instead of words. This way, we
are able to handle words not seen during training by splitting
them into subwords, which are present in the vocabulary. We
learn the subword segmentation using concatenated source
and target sides of both the parent and child language pairs.
To avoid bias in the vocabulary towards the high-resource
language pair, [7] suggest to sample a subset of the sentences
from the high-resource language pair that has a size similar to
the low-resource language pair dataset, calling this approach
“balanced vocabulary”. They also showed, that a significant
portion of this balanced vocabulary is relevant only for the
child model, as it never appears in the parent training data.
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Unlike [7], we also experiment with additional vocabu-
lary setups, using either only the parent (or only the child)
training data to generate the vocabulary. We call these re-
stricted setups “parent vocabulary” and “child vocabulary”,
respectively. The idea behind the use of “child vocabulary”
is that there will be more child-specific wordpieces which
can lead to a better performance of the child model. On the
other hand, the reasoning behind the “parent vocabulary” is
that we can use only a single parent for the training of several
different child models and therefore save the time of training
parent models for each child separately.

3. Back-translation
The organizers of IWSLT 2018 provided participants with
a vast amount of English monolingual data to use in their
system submissions, both in-domain and out-of-domain. We
exploit the English in-domain TED talks monolingual data
for creation of the synthetic data as described by [5].

The key idea is to use an MT system trained to trans-
late in the opposite direction (English-to-Basque) and use it
to translate the monolingual data. These synthetic outputs,
when paired with the input monolingual data, can be then
used as additional parallel data for the original (Basque-to-
English) direction. Even though the source side is noisy, the
additional training examples help the decoder to learn a more
fluent target side language model.

We use this method to back-translate only the in-domain
TED talks data because it is the target domain of the Low
Resource task.

To create the synthetic parallel data from the English
monolingual corpus, we used a Transformer model and trans-
fer learning. We first trained on the English-to-Czech corpus
and then adapted the model using English-to-Basque corpus.
This was based on our previous experiments where transfer
learning resulted in a model with a better translation perfor-
mance and therefore a better quality of synthetic data.

4. Model description
We use the self-attentive neural network architecture called
Transformer [4]. We chose this network architecture due to
its reported state-of-the-art results [9, 10],1 making it a strong
baseline for our experiments.

The architecture follows the encoder-decoder paradigm
where the encoder creates hidden representations of the
source language tokens and the decoder outputs the target se-
quence conditioned on that source language representations
and the representations of the already decoded tokens.

The self-attentive encoder contains several layers each
consisting of two sublayers: the first one applies a self-
attention and the second one a feed-forward network. The
decoder is similar, including an additional attention-over-
encoder layer between its own self-attention and the feedfor-

1http://www.statmt.org/wmt18/translation-task.
html

Dataset Sentences Tokens EN Tokens CS/EU
Genuine EN-EU 0.9 M 7.0 M 5.1 M
Genuine EN-CS 40.1 M 563.4 M 490.5 M
Synthetic EN-EU 0.3 M 5.3 M 3.6 M

Table 1: Sizes of the parallel corpora. The “synthetic” have
Basque side back-translated from English.

ward layers. The self-attention layer is the key component of
the Transformer architecture, effectively modeling the con-
text of each token and thus substituting other methods such as
the recurrent hidden units [1, 11] or convolutional networks
[12]. The absence of recurrent units makes the training much
faster due to a possible parallelism while requiring a lower
number of layers when compared to the convolutional net-
work.

We use the Transformer implemented in Tensor2Tensor
[13],2 version 1.4.2. Our models are based on the “big single
GPU” configuration as defined in the paper. We use the de-
fault setup, only changing the batch size to 2300 and a max-
imum sentence length to 100 wordpieces in order to fit the
model to our GPUs (NVIDIA GeForce GTX 1080 Ti with
11 GB RAM).

We use Noam learning rate decay scheme with the start-
ing learning rate of 0.2 and 32000 warm-up steps. The de-
coding uses the beam size of 8 and length normalization
penalty is set to 0.8.

5. Dataset
For Basque-English, we used all the available data that were
allowed by the organizers of IWSLT 2018. The parallel cor-
pora consist of only around 5,600 in-domain (TED) sentence
pairs and around 940,000 out-of-domain sentence pairs.

In addition to the resources suggested by the organizers,
we also used data from OPUS and WMT, which were also
allowed. Specifically, corpora PaCo2 English-Basque and
QTLeap Batches 1-3 from WMT.3

For English-Czech, we use all parallel data available for
WMT 2018 except of the Paracrawl. The majority of the data
is part of the CzEng 1.7 corpus (the filtered version, [14]).4

We also created synthetic Basque-English data using
back-translation. We generate them by translating all En-
glish sentences from the TED talks data gathered across all
language pairs provided for IWSLT 2018. The data do not
contain sentences from talks in test set.

From all training sentences, we dropped sentence pairs
shorter than 4 words or longer than 75 words on either source
or target side. This results in a speedup of the training by
allowing a larger batch size. A similar setup was used in
[15] where the authors argue that in their experiments, the

2https://github.com/tensorflow/tensor2tensor
3http://www.statmt.org/wmt16/

it-translation-task.html
4https://ufal.mff.cuni.cz/czeng/czeng17
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Vocabulary CS to EN (BLEU) EU to EN (BLEU)
Child only 24.93 22.92
Parent only 27.81 23.29
Balanced 27.93 23.63
Baseline – 19.09

Table 2: The results of transfer learning. The first column
shows the performance of the parent model, the second col-
umn is the child model based on the corresponding parent.
The baseline does not use transfer learning. The results are
reported on the development set. Scores are comparable only
within columns.

performance is not negatively influenced by the reduction of
training data.

To evaluate the models during training we used the de-
velopment data provided by IWSLT 2018 (Basque-English)
and development data available for WMT (Czech-English),
namely WMT 2011 Newstest.

6. Results

In this section we first compare results obtained when using
the three types of vocabulary and then describe our systems
submitted to the IWSLT evaluation.

6.1. Effect of vocabulary

We experiment with three types of shared vocabulary as de-
scribed in Section 2. All setups use the exact same data (and
a same layout of the transfer learning); they differ only in the
vocabulary. First, we trained three models from Czech-to-
English with different vocabularies for 1M steps and then we
continued with the transfer learning of the child Basque-to-
English models until their performance on the validation set
stopped improving.

As seen in Table 6.1, the transfer learning for Basque-to-
English improves the model performance significantly over
the baseline, gaining over 4 BLEU points (19.09 vs. 23.63).

When we look at the parent-only or child-only vocabu-
lary setups, both performed worse than the balanced vocabu-
lary. With the balanced vocabulary, we obtain the best result
on the Basque-to-English translation. We suppose that the
same holds for other language pairs too, since there is no
language specific restriction.

Still, it would be interesting to know whether the data ra-
tio 50:50 is the best possible setup or whether other ratios
could improve the results. We plan to investigate this in our
future work. We assume that the exact ratio might be lan-
guage specific, however, in general, using the balanced ap-
proach with an equal representation of the languages might
still be an effective option.

Run Transfer

Back-tra
nslation

Genuine
BLEU NIST TER

Primary X X X 22.86 6.01 60.31
Contrastive 1 – – X 16.13 4.98 66.55
Contrastive 2 X X – 22.26 6.00 63.89
Contrastive 3 X – X 21.11 5.84 62.34

Table 3: Results of our submissions. Official evaluation on
the test set.

6.2. Final results

We submitted several contrastive models for the final IWSLT
evaluation. All our systems use the same balanced vocabu-
lary. The synthetic data were generated by the English-to-
Basque system. All final models are averaged over the last 5
checkpoints.

The primary system uses the transfer learning: the parent
model is trained for 1M steps on Czech-to-English, followed
by transfer learning using only the synthetic data for 405k
steps, and completed by 60k steps on the genuine, original
parallel data.

The run labelled “Contrastive 1” in Table 3 is the baseline
trained only on the official parallel Basque-to-English data.

“Contrastive 2” uses transfer learning on the parent
model Czech-to-English trained for 1M steps, followed by
training on only the synthetic English-to-Basque data, with-
out the use of genuine parallel data.

Finally, “Contrastive 3” also uses transfer from Czech-to-
English as the primary, followed by genuine parallel English-
to-Basque data, without the use of any synthetic data.

As clearly confirmed by three automatic metrics, the
combination of the back-translation and transfer learning
leads to the best performance.

7. Related work
In [16], Firat et al. propose zero-resource multi-way mul-
tilingual systems, with the main goal of reducing the total
number of parameters needed to train multiple source and
target languages. To prevent the network from forgetting the
previously learned language pairs, they implement a special
training schedule.

Another multilingual approach is proposed by [8] where
Johnson et al. simply use all translation pairs at the same time
and the choice of the target language happens at runtime by
special token at the end of the input sentence. This forces the
model to learn to translate between many languages, includ-
ing language pairs without available ‘direct’ parallel data.

The lack of sufficient amounts of parallel data can be also
tackled by unsupervised translation [17, 18]. The general
idea is to train monolingual embeddings using large amounts
of monolingual data and finding a projection from the source
to target words that preserves the structure of embedding
vector spaces [19]. Using these shared fixed bilingual em-
beddings an architecture with a shared encoder [18] or both
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shared encoder and decoder [17] is then trained using multi-
ple training objectives.

Aside from the common back-translation [5], simple
copying of the target monolingual data back to the source-
side has also been shown to improve translation quality in
the low-resource setting [20].

The transfer learning we used could be also seen as a vari-
ant of the so-called “curriculum learning” [21, 22], where the
training data are ordered from foreign out-of-domain to the
in-domain training examples to speed up the training conver-
gence.

8. Conclusion
In this paper, we presented our systems for IWSLT 2018 low-
resource Basque-to-English translation task. We reached a
significant improvement using transfer learning and back-
translation. We compared three types of vocabularies used
for the transfer learning and concluded, that the balanced vo-
cabulary is the best option.
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Abstract

This paper describes FBK’s submission to the end-to-end
English-German speech translation task at IWSLT 2018. Our
system relies on a state-of-the-art model based on LSTMs
and CNNs, where the CNNs are used to reduce the tem-
poral dimension of the audio input, which is in general
much higher than machine translation input. Our model was
trained only on the audio-to-text parallel data released for
the task, and fine-tuned on cleaned subsets of the original
training corpus. The addition of weight normalization and
label smoothing improved the baseline system by 1.0 BLEU
point on our validation set. The final submission also fea-
tured checkpoint averaging within a training run and ensem-
ble decoding of models trained during multiple runs. On test
data, our best single model obtained a BLEU score of 9.7,
while the ensemble obtained a BLEU score of 10.24.

1. Introduction
End-to-end speech translation (that is, the direct translation
of an audio signal without intermediate transcription steps)
has recently gained increasing interest in the scientific com-
munity thanks to the recent advances of neural approaches in
the related ASR and MT fields [1, 2, 3, 4, 5]. Effective ap-
proaches to the task can become a useful solution to deal with
languages that do not have a formal writing system [6], as it is
possible to create a collection of spoken utterances with their
respective translations in a more common language. We can
also expect that, in the future, end-to-end speech translation
systems will overcome problems related to the cumulative
effect of speech recognition errors introduced in pipelined
architectures. FBK’s submission to the IWSLT 2018 Speech
Translation (ST) task relies on a single model that takes as
input features extracted from an English audio signal and re-
turns as output a written translation in German. As the in-
put is not in raw wave form, one might argue that the “end-
to-end” denomination does not fit in this formulation of the
task. Nevertheless, since feeding the network with the input

* Work performed during an internship at FBK

features released by the task organizers was allowed, we ad-
here to the looser definition of “end-to-end” implicit in this
year’s task formulation.1

Our system was trained using the state-of-the-art
sequence-to-sequence model based on LSTMs and CNNs
introduced in [2]. Considering the high number of exper-
iments to run, and the high number of epochs needed to
train a speech translation model (up to 87 in the case of
our final submission), the model was implemented using
the fairseq2 [7] sequence-to-sequence learning toolkit from
Facebook AI Research. The tool, which is tailored to NMT,
was adapted to the ST task showing considerable reductions
in training time compared to the same models implemented
on other platforms (from hours to minutes in the processing
of the same amount of training instances).

One of the main challenges we faced was how to max-
imize the usefulness of the available training data by weed-
ing out noisy (and potentially harmful) instances. For this
purpose, we developed the two data cleaning procedures de-
scribed in Section 2. The architectural choices and the main
implementation details of our system are described in Sec-
tion 3. In Section 4, we report the results on our validation
set, which were obtained by using different data conditions
and hyper-parameters. Section 5 concludes the paper with
final remarks.

2. Data Cleaning
Our submission was obtained by a model solely trained with
the data released for the speech translation task. Before
building the model, we devoted particular attention to the
quality of the training material, aiming to reduce the pos-
sible impact that noise in the data can have on training time
and model convergence. Indeed, the initial training set of
171, 121 instances comprised elements featuring either a par-
tial alignment between the audio signal and the correspond-

1Our work has been pursued during a summer project with the goal of
gaining hands-on expertise in this new promising field with the simplifica-
tion of a standardized data set.

2http://github.com/facebookresearch/fairseq
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ing transcription, or a skewed ratio between the number of
feature frames and the characters in the transcription. To
identify and weed out such noisy and potentially harmful
training items, we applied two cleaning procedures. Both the
procedures take advantage of the available English transcrip-
tions of the audio signals3 and were run in cascade, after the
removal of 1, 000 items to be used as our development set.
As discussed in Section 4.1, though smaller in size, the re-
sulting subsets of the original training corpus yielded perfor-
mance improvements on development data, especially when
used for fine-tuning a model trained on the original unfiltered
corpus.

2.1. Cleaning Based on Alignment

Starting from the initial training corpus of 170, 121 instances
(called “Parallel” henceforth), the first cleaning step was
aimed to identify and remove the items featuring a poor
alignment between the audio signal and the text. Assum-
ing that the English and German texts are parallel, the po-
tential noise introduced by such instances is represented by
wrong transcriptions/translations (either totally inadequate or
containing spurious words) of the original source signal. To
identify them, our approach was to align each audio signal
with the corresponding English transcription and then decide
what to retain based on the alignment quality (i.e. consider-
ing unaligned words as evidence of noise). We performed the
alignment on a sentence-by-sentence basis using Gentle,4 a
forced aligner based on Kaldi.5 After the alignment, we re-
moved all the training instances in which at least one word in
the transcription was not aligned with the corresponding au-
dio segment. This strict cleaning policy (due to time limita-
tions, we did not experiment with less aggressive strategies)
resulted in the removal of 24, 240 instances, which reduced
the initial “Parallel” corpus to 145, 881 items. Henceforth,
the corpus resulting from this first cleaning step will be re-
ferred to as “Clean 1”.

2.2. Cleaning Based on Frames/Characters Ratio

The second cleaning step was aimed to identify and remove
from “Clean 1” the training instances featuring a skewed ra-
tio between the number of feature frames and the characters
in the transcription. In this case, the potential noise is due
to portions of the original speech that correspond to long si-
lences, background noise (e.g. laughter and applause), or
words that are not present in the transcription/translation. To
identify such possible outliers, looking at the ratios reported
in Figure 1, we decided to cut the distribution so to retain
only the training instances belonging to ratio bins that con-
tain at least 5, 000 items. The corresponding cutting values
of 3.5 and 7.5 resulted in the removal of 29, 898 instances,

3Note that data cleaning is the only phase in which we used the English
transcriptions. Being this step independent from the actual system training,
our approach is still fully end to end.

4https://lowerquality.com/gentle/
5http://kaldi-asr.org/index.html

Figure 1: Distribution of the training instances in terms of
the ratio between the number of feature frames and the char-
acters in the transcription.

which further reduced our training corpus to 115, 983 items.
Henceforth, the corpus resulting from our second cleaning
step will be referred to as “Clean 2”.

3. Seq2seq Speech Translation model
We re-implemented the seq2seq ST model introduced in [2],
which uses an encoder-decoder-attention architecture based
mainly on LSTMs [8]. The source-side input length is some
order of magnitudes higher than the decoder side, and thus
some reduction in the temporal dimension was performed us-
ing 2-D CNNs with stride (2, 2). The decoder is inspired by
the early deep-transition decoder used in Nematus [9], which
stacks two LSTM units in a way that the single LSTMs are
not recurrent by themselves, while the stack of the two is
globally recurrent. A schema of the model is depicted in
Figure 2.

3.1. Encoder

The input to the encoder is a variable-length audio se-
quence with 40 features for each time step. At first, the in-
put sequence is processed by two time-distributed densely-
connected layers with size of 256 and 128 respectively,
each followed by a tanh activation. The output of the
densely-connected layers is then processed by two stacked
2-dimensional convolutional layers, each having a 3× 3 ker-
nel and stride = 2. Let n be the sequence length and f be
the number of input features to the first convolutional layer.
The output of the first convolution is of size (16, n/2, f/2)
and for the second convolution is of size (16, n/4, f/4).
The 16 filters are then flattened to obtain an output of size
(n/4, 4 × f), which is subsequently processed by a stack
of three bidirectional LSTM layers [10]. The initial state of
the LSTM is initialized as a zero vector at the beginning of
the training, but then it is optimized via back-propagation to-
gether with the rest of the network. We found that training
the initial state gives a boost in performance and speeds up
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Figure 2: Schema of our end-to-end model architecture. The
numbers on the left represent the dimensionality of each en-
coder layer’s output. The batch size is not written.

the model convergence.

3.2. Decoder

The decoder consists of a two-layered deep-transition
LSTM [9] followed by a deep output layer [11]. The in-
put of the first layer is the character embedding of the last
character. The output of the first layer is used as a query
vector to compute an attention over the last layer of the en-
coder. The attention output is then used as input to the second
LSTM layer. The hidden and cell states received as input by
the two LSTM layers are, for every time step, the last hid-
den and cell states produced by the other LSTM layer. The
last encoder output is averaged over the time dimension and
this new tensor is passed as input to two different densely-
connected layers with tanh non-linearity. The two functions
compute the initialization of the hidden and cell states for the
first LSTM layer. The deep output is a densely-connected
nonlinear function, which takes as input the concatenation of
the LSTM output, the attention output and the current symbol
(character) embedding, and outputs a tensor of size 512. This
tensor is finally multiplied by a second character embedding
matrix to compute the scores over the whole vocabulary.

3.3. Attention

The attention layer computes a distribution of weights that
sums up to 1 for the encoder output sequence (soft attention)
with no positional information (global attention). The scores
for each encoder position are computed according to their
relevance with respect to the decoder state. The relevance
score is computed using the general attention score proposed
in [12].

3.4. Increased Regularization

Due to the small size of the training data, we found useful to
apply some regularization tricks. The first and more common
technique is the dropout applied to each layer [13]. Instead
of variational dropout [14], we preferred to use the fastest
implementation of LSTMs provided by the Pytorch library,
which uses regular dropout.

Besides dropout, we applied weight normalization and
label smoothing as additional techniques for regularization.
Weight normalization [15] is a simple technique that decom-
poses the parameter matrices into their magnitude and direc-
tion components in order to easily produce a transformation
that scales the weights and reduces the gradient covariance
to zero. The result is a faster convergence and a limitation of
the weight space, which has a regularizing effect.

Label smoothing [16] smooths the cross-entropy cost
function by giving a weight of 0.9 to the probability of the
correct symbol, and 0.1 to the sum of the probabilities of
the other symbols. Label smoothing makes the model less
confident on its predictions, producing a regularizing effect.
In NMT, it has been observed that, despite the increased
loss and perplexity usually obtained with this technique, the
translations are usually better [17] and end up in improved
BLEU [18] scores.

4. Experiments
In this section we summarize the experiments that motivated
our choices for the final submission. Since the goal of our
participation was to explore the potential of a single end-
to-end model that can translate directly from audio signals,
we used as training data only the Speech Translation TED
Corpus that was released for the task. No pre-training has
been performed on different types of data (such a pre-training
would in fact rely on ASR data). All our models were trained
using the Adam optimizer [19] with learning rate of 0.001,
and values for β1 and β2 of 0.9 and 0.999. We applied
dropout of 0.2 to all layers, including the input features. The
norm of the gradients was clipped to 5. All the models have
been trained until convergence according to the loss on a
held-out set of 1, 000 sentences (see Section 2). The results
achieved by each model on the validation set are reported
Tables 1–4.

At first, we experimented with the reference implemen-
tation of the sequence-to-sequence model6 that is based on
Tensorflow [20]. However, with about 3.5 hours per epoch
on a single NVIDIA GTX-1080 GPU, its training time re-
sulted to be incompatible with the need of quickly testing a
range of alternative solutions. To avoid this bottleneck, we
re-implemented the same model within the fairseq toolkit,
which is highly optimized to significantly reduce training
time. Our re-implementation was indeed faster, with a re-
duction of the training time to about 30 minutes per epoch
for the largest version of the training corpus (“Parallel”), and

6https://github.com/eske/seq2seq
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Data Val. BLEU
Parallel 8.54
Clean 1 8.98
Clean 2 8.54

Table 1: Results of the base model over the three different
versions of the dataset.

Data Val. BLEU
P → C1 9.55
P → C2 9.85
C1 → C2 9.89
P → C1 → C2 10.14

(a) Dataset fine-tuning

Strategy Val. BLEU
Adam annealing 9.11
NAG annealing 8.74

(b) Restart strategy

Table 2: (a) Results for the base model in different fine-
tuning conditions. P stands for Parallel, C1 for Clean 1 and
C2 for Clean 2. Only the last row refers to a double step of
fine-tuning. (b) Results with two different restart strategies
for the model trained on Clean 2.

about 20 minutes per epoch for the smallest one (“Clean 2”).
The wall clock time of a single training run was around 30
hours, with a maximum of 10 additional hours for the fine-
tuning.

4.1. Dataset Selection

In the first round of experiments, we were interested in un-
derstanding the impact of the data cleaning procedures de-
scribed in Section 2. To this aim, we trained the base system
on the three different versions of the dataset (i.e. “Parallel”,
“Clean 1” and “Clean 2”) and evaluated the resulting mod-
els on the same validation set. The results listed in Table 1
show that Clean 1 provides us with the best result, but Clean
2 leads to a result equivalent to Parallel despite using about
36% less data. Thus, we decided to use Clean 2 for the fol-
lowing experiments in order to have faster training cycles.

4.2. Dataset Fine-tuning and Restart Strategy

In this subsection we address two questions. The first one is
whether it is useful to fine-tune a model trained on a larger
dataset by using a smaller and cleaner subset of the same cor-
pus. The second question is whether a restart strategy with
learning rate annealing can improve the performance.

The first question was addressed by restarting the training
of the model by using the new, smaller dataset as training set,
but with the same training policy and hyper parameters. The
results listed in Table 2a show that fine-tuning the model on
cleaner data always helps. In particular, fine-tuning on Clean

Model Val. BLEU
AST Seq2Seq 8.54
+ Weight Normalization (WN) 8.69
+ Label Smoothing (LS) 8.74
+ Sigmoid Attention 8.44
+ WN and LS 9.69

Table 3: Results on the data cleaned with two cleaning steps.

2 (which is smaller but of higher quality) always results in
better performance, especially in the case of a double step of
fine-tuning (P → C1 → C2). Interestingly, also using only
the clean data (C1 → C2) yields better results than training
the initial model on the original Parallel corpus.

To address the second question, we used the model
trained on Clean 2 and restarted the training on the same
training set with a policy of learning rate annealing. To this
aim, the learning rate was multiplied by 0.5 every time the
validation loss did not improve over the best one computed so
far [21]. We experimented using both Adam with annealing
and SGD with Nesterov Accelerated Gradient (NAG) [22]
with annealing. The results listed in table 2b show that,
though Adam with annealing yields a better model, both the
BLEU scores are at least 0.45 points less than the worse
model with fine-tuning.

4.3. Features Exploration

In this round of experiments we trained our base model on
the Clean 2 dataset and compared its result with models that
have weight normalization, label smoothing, sigmoidal at-
tention instead of softmax attention, and weight normaliza-
tion and label smoothing together. The results on the valida-
tion set, which are listed in Table 3, show that both weight
normalization and label smoothing give a small contribution,
while the sigmoidal attention slightly decreases the transla-
tion quality. Moreover, the joint addition of label smoothing
and weight normalization gives a sensibly higher boost, sug-
gesting that the models need high regularization. Consider-
ing the scarce amount of data, the need for high regulariza-
tion was expected. However, it is interesting to note that by
increasing the dropout to 0.3 the base model converges to a
much worse point.7 From now on, we call the model with
weight normalization and label smoothing “full modell”.

4.4. Experiments with Full Model

Once we found that the full model is clearly better than the
others, we replicated the experiments on all the datasets with
the new model. In the second column of Table 4a, we can see
that this model is more sensitive to noise. In fact, training it
with the “Parallel” set leads to poor performance in trans-
lation (4.66 BLEU), but this lower translation quality was
not expected by looking at only the training and validation

7Observed in preliminary experiments, not reported here.
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Data BLEU
Parallel 4.66
Clean 1 9.69
Clean 2 9.69

(a)

Data Best Avg Test
P → C1 10.26 10.46 -
C1 → C2 9.71 10.42 -
P → C2 10.63 10.90 9.70
P → C1 → C2 10.41 10.78 -
+ Adam annealing 10.50 10.59 -
Ensemble of 4 - 11.60 10.24

(b)

Table 4: Results using different versions of the dataset
for training our model with weight normalization and label
smoothing.

losses. Nonetheless, the fine-tuning of this model on cleaner
data, whose results are listed in table 4b, leads to improve-
ments ranging from 0.57 to 0.94 BLEU points with respect
to the models trained only on the clean data.

Unfortunately, the score of 10.63 of the best model
(P→C2) represents only a limited improvement when com-
pared with the best model in the second column of Table 2a
(P→C1→C2), which improved from 8.54 of the base model
to 10.14. The fifth row of Table 4b shows the results when
the last fine-tuning is performed using Adam with annealing
instead of Adam with a fixed learning rate. Based on these
results, we submitted our single best model (P → C2 Avg) as
our contrastive submission.

4.5. Checkpoint Averaging and Ensemble Decoding

Checkpoint averaging consists in computing the average of
different checkpoints of the same training. In [23], it has
been shown that, in neural machine translation, it leads to
a better translation quality than using a single model. For
each model, we computed the BLEU score on the validation
set for the last 10 checkpoints, and averaged the weights of
all the models whose results are less than 0.5 BLEU points
worse than the best one. The improvement can be observed
by comparing the Best and Avg columns of Table 4b.

We also performed ensemble decoding of models trained
in different runs. The ensemble involved all the Avg check-
points listed in table 4b, except for “C1→ C2”, which was
trained using a different vocabulary. The ensemble of the 4
models obtained a result of 11.60 BLEU on the validation
set.

4.6. Submitted Systems and Results

Based on the outcomes of the above experiments on devel-
opment data, we opted for submitting the following systems:

• Primary: ensemble of 4 systems (Section 4.5).

• Contrastive: Checkpoint averaging of P→C2 (Ta-
ble 4b).

The result of the primary system is 11.60 BLEU score on
our validation set and 10.24 on the test set, whereas the con-
trastive system scored, respectively, 10.90 and 9.70 in the
validation and the test set.

5. Conclusions
We described FBK’s participation in the end-to-end speech
translation task at IWSLT 2018. We have shown that data
cleaning is useful in reducing the training time by discard-
ing a good portion of the training data, while not hurting
translation quality. We have also observed that fine-tuning
a model using a cleaner dataset can bring improvements up
to 1.6 BLEU points. Moreover, regularizing the model with
normalization and label smoothing can produce an improve-
ment of more than 1.0 BLEU point with clean datasets, but
the same model fails to converge to a good point using all
the data. In addition, using checkpoint averaging and en-
semble decoding gave us another gain of 1.0 BLEU point.
The final score on this year’s test set is of 9.70 and 10.24
BLEU respectively for our best single model and for the pri-
mary submission based on ensemble decoding. In order to
improve the competitiveness of this system, our next exper-
iments will include ASR for pretraining the encoder [24] or
for multi-task learning [4].
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Abstract
This paper describes the Johns Hopkins University (JHU)
and Kyoto University submissions to the Speech Translation
evaluation campaign at IWSLT2018. Our end-to-end speech
translation systems are based on ESPnet and implements an
attention-based encoder-decoder model. As comparison, we
also experiment with a pipeline system that uses independent
neural network systems for both the speech transcription and
text translation components. We find that a transfer learn-
ing approach that bootstraps the end-to-end speech transla-
tion system with speech transcription system’s parameters is
important for training on small datasets.

1. Introduction
We report on our efforts on the IWSLT 2018 Speech Trans-
lation task. The goal of the 2018 task is to build and evalu-
ate English-to-German speech translation systems on the do-
main of lectures and TED talks. We build two systems:

• Pipeline System: English (EN) speech transcription
system using a joint CTC-attention model (Section
3.1), followed by a English-to-German (EN-DE) text
translation system using a RNN-based sequence-to-
sequence model (Section 3.3).

• End-to-End System: English-to-German (EN-DE)
speech translation system using an RNN-based
sequence-to-sequence model transferred from the joint
CTC-attention model (Section 4).

The main challenge is to develop end-to-end neural sys-
tems that are trainable given the small amount of data (of
English speech matched to German text). We find that boot-
strapping the end-to-end system with the parameters of an
English-only speech transcription system (i.e. ASR of En-
glish speech to English text) was helpful.

Generally, we are interested in comparing the relative
merits of end-to-end vs. pipeline approaches. Currently,
our pipeline system outperforms the end-to-end system, even
when trained on the same number of utterances, suggesting
that there is much room for future work in end-to-end mod-
els.

† Work carried out as a visiting scholar at JHU.

2. Data
We build our systems on the following provided corpora:

1. Speech-Translation TED corpus (ST TED): This data
contains English speech (EN-s), the corresponding
English transcription (EN-t), as well as the German
translation (DE-t). We use this to train both pipeline
and end-to-end systems. In particular, (EN-s,EN-t) is
used to train the pipeline’s speech transcription com-
ponent (Section 3.1); (EN-t, DE-t) is used to train
the pipeline’s text translation component (Section 3.3);
and (EN-s, DE-t) is used to train the end-to-end sytem
(Section 4).

2. TED LIUM corpus (TEDLIUM2): This data contains
English speech (EN-s) and their English transcrip-
tion (EN-t). We use this as additional data to train
the pipeline system’s speech transcription component,
which is also used to initialize the end-to-end system.

3. WMT 2018 data, filtered to the TED domain us-
ing Moore-Lewis data selection [1] (WMT-Filtered):
We trained 5-gram Engish language models on TED
(LMTED) and a random sample of the WMT data
(LMWMT ), then selected the top 1 million WMT bi-
text according to the perplexity difference between
LMTED and LMWMT . Finally, we filtered all sen-
tences that were longer than 100 tokens or had an out-
of-vocabulary rate (with respect ST TED dictionary)
of 10% or larger. This is used to augment the training
data for the pipeline’s text translation component.

For data preprocessing of transcriptions and translations
in all languages, we normalized punctuation and performed
tokenization using the Moses scripts1. For both the pipeline’s
speech transcription and the end-to-end speech translation,
we used a fixed vocabulary of 5k or 10k wordpieces, which
were composed from characters to words and generated us-
ing sentencepiece2. We used the same dictionary including
both EN and DE wordpieces to capture the common words
in both languages.

1normalize-punctuation.perl and tokenizer.perl in
https://github.com/moses-smt/mosesdecoder

2https://github.com/google/sentencepiece
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For the pipeline’s text translation component, we exper-
imented with different kinds of subword units. For simplic-
ity, we did not use any truecase models for any systems and
worked directly with the natural casing. Table 1 shows the
data sizes in each corpus.

For feature extraction for speech transcription and trans-
lation, we extracted 80-channel log-mel filterbank outputs
with 3-dimensional pitch features computed with a 25ms
window and shifted every 10 ms using Kaldi [2]. The fea-
tures were normalized by the mean and the standard devi-
ation on the whole training set (excluding our development
set). We removed utterances having more than 3000 frames
or more than characters due to the GPU memory capacity.

corpus #utterance speech datasize
Speech-Translation TED 166,214 271 hours

TEDLIUM2 258,943 210 hours
WMT-Filtered 988,697 -

Table 1: Data size in each corpus.

3. Pipeline System
3.1. Speech Transcription Component

In this section, we briefly describe the joint CTC-attention
framework for the speech transcription (i.e. ASR) com-
ponent. Let x = (x1, . . . , xT ) be acoustic features and
y = (y1, . . . , yU ) be the corresponding target sentence in
the same language as x.

3.1.1. Connectionist Temporal Classification (CTC)

Connectionist Temporal Classification (CTC) [3] is a latent
variable model which directly maps the input sequence into
the output sequence of shorter length. To compensate the dif-
ferences of sequence lengths, CTC introduces an additional
”blank” symbol. The CTC loss function is defined as the
summation of negative log probabilities of all possible paths
mapped from ground truth labels interleaved with blank la-
bels.

Lctc = − lnP (y|x)
= − ln

∑

π∈B−1(y)

P (π|x)

where π represents a CTC path, and B represents a col-
lapse function which maps all the CTC paths into the unique
ground truth labels y by removing all blank labels. Based
on the conditional independence assumption, posterior prob-
abilities P (π|x) is factorized frame by frame as follows:

P (π|x) =
T∏

t=1

P (πt|ht)

where ht represents an activation of the top layer of the
encoder. P (π|x) is effectively calculated by the forward-
backward algorithm.

3.1.2. Attention-based encoder-decoder

Attention-based encoder-decoder [4, 5] is another sequence
labeling model which directly predicts output sequences.
Unlike the CTC framework, this approach does not make any
conditional independence assumptions, where the model pre-
dicts each token conditioned on all previous tokens.

P (y|x) =
U∏

u=1

P (yu|y1, . . . , yu−1,x)

Attention-based encoder-decoder model consists of two
modules: the encoder and decoder. The encoder network
maps input features x into high-level distributed represen-
tation h, and the decoder network picks up a portion of h
with a scoring function given encoder and decoder hidden
states, which is called the attention mechanism. We used the
location-aware scoring function, which takes previous atten-
tion weights into account. The loss function is designed as
the negative log probabilities as follows:

Latt = − lnP (y|x)

3.1.3. Joint CTC-attention

We introduce the multitask learning (MTL) framework with
the CTC objective in the training of the attention-based
encoder-decoder model [6]. This approach has two advan-
tages: 1) it encourages monotonic alignments in the en-
coder network, which leads to fast convergence and removes
inappropriate alignments in long sequences, 2) it leads to
sequence-level optimization. The loss function of the joint
CTC-attention framework is designed as an interporation of
Lctc and Latt with a tunable parameter λ (0 ≤ λ ≤ 1):

Lmtl = λLctc(y|x) + (1− λ)Latt(y|x)

In addition, scores from CTC outputs are taken into ac-
count in the beam search decoding of the attention-based
model during the inference stage [7, 8]. Because CTC is
frame-synchronous, hyper-parameters tuning such as length
penalty and coverage penalty are not neccesary any more in
order to prune inappropriate hypotheses.

3.2. Evaluation of Speech Transcription Component

Preprocessing: We used the Speech-Translation TED
corpus augmented with TED LIUM corpus, totaling 481h.
With regard to the official development sets provided by
the IWSLT organizers (dev2010, tst2013 etc.), there is
no segmentation information of the start and end time of
utterances. Therefore, we sampled 4k utterances from the
Speech-Translation TED corpus as the validation set, and
removed them from the original training data. For evalua-
tion, we segmented each audio file in the development sets
with the LIUM SpkDiarization tool [9] first, then performed
MWER segmentation with the toolkit from RWTH [10] as
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in the baseline implementation provided by organizers3.

Architecture: We built end-to-end ASR models with
the ESPnet toolkit [11] with a pytorch backend [12]. For
the encoder part, we used 2-layers CNN layers with max-
pooling layers followed by 3 or 5-layers of 1024 dimensional
bidirectional LSTM [13], resulting in 4-fold time reduction.
For the decoder part, we used 2-layers of 1024 dimensional
LSTM. We did not conduct regularization such as dropout,
label smoothing [14, 15], scheduled sampling [16] for
speech transcription.

Optimization: Our systems were optimized with the
AdaDelta algorithm with epsilon annealing for 15 epochs.
The weight for CTC loss λ was empirically set to 0.5.

Decoding: We conducted beam search decoding with
beam width 20. LSTM language model of 2 layers with 650
hidden units trained on the same parallel corpus was used.

Results: Results for the TEDLIUM2 corpus are shown
in Table 2. 5k wordpiece units are always better than 10k in
this corpus. We also conformed the consistent improvements
with deeper encoders (3 layers → 5 layers). Results for
the official development sets are shown in Table 3. As in
Table 2, 5k units are better than 10k units, but we cannot see
improvements by adding encoder layers. We suspect that
this is due to the quality of audio segmentation by the LIUM
SpkDiarization tool and utterance matching by the RWTH
MWER tool.

#unit #layer dev test
10k 3 13.8 12.3
5k 3 12.1 11.1

10k 5 13.3 12.5
5k 5 11.6 10.7

Table 2: Word error rate (WER) evaluated on the
TEDLIUM2 corpus. #unit represents the number of untis in
the softmax layer. #layer represents the number of BiLSTM
layers following CNN layers in the encoder network.

#unit #layer dev2010 test2010 test2013 test2014 test2015
10k 3 28.2 29.5 31.9 32.6 46.5
5k 3 25.6 27.7 30.6 31.1 44.4
10k 5 28.8 31.2 33.1 34.5 45.6
5k 5 27.4 30.8 32.0 33.7 47.9

Table 3: Word error rate (WER) evaluated on the official de-
velopment sets.

3.3. Text Translation Component

Preprocessing: We built neural machine translation (NMT)
systems for the English-German text translation component
of our pipeline system. These systems were trained on the

3https://github.com/isl-mt/SLT.KIT

ST TED corpus, with English manual transcript for speech
recognition on the source side and corresponding German
translation on the target. Training data were tokenized and
split into subwords using Byte Pair Encoding (BPE) [17].
We set the number of BPE merge operations to be 20k for
the source side — same for the target side. The validation
set used for early stopping consists of around 4k utterances,
and they were randomly sampled from the corpus.

Architecture: The attention-based NMT models con-
sist of two components: an encoder network, which is a
recurrent neural network (RNN), that provides a represen-
tation of the input sentence, and a decoder network, which
is also a RNN, that generates translation based on the input
context with attention mechanism [5, 18] applied.

We trained our NMT systems with Sockeye [19]. In
the model we used based on hyper-parameter tuning, the
encoder and decoder both had 2 layers with 512 LSTM
hidden units on each layer and we applied dot product
attention for RNN decoders. Both the source and target
embedding vectors were set to 512. We used word-count
based batch of size 4096 words and maximum sequence
length 100. For regularization, the RNN inputs and states
dropout rates for both the encoder and the decoder were set
to 0.1.

Optimization: Our systems employed the Adam op-
timizer to reduce the cross-entropy loss with an initial
learning rate 0.0005. We made a checkpoint after every 2000
batch updates, and if the model had not improved in per-
plexity on the validation data for more than 8 checkpoints,
we would perform early stopping for the training process. In
general, it takes around 50 epochs (about 10 hours) for the
model to converge.

#BPE merge ops 20k 30k 40k 50k
avg dev BLEU 23.83 24.18 24.28 23.77

Table 4: Effect of different number of BPE merge opera-
tions on average BLEU score on development sets. The ini-
tial learning rate was set to 0.0007.

Hyper-parameter Tuning: Hyper-parameters were
tuned based on systems’ average decoding performance
(BLEU score) on dev2010, tst2010, tst2013, tst2014 and
tst2015 set. We searched the number of BPE merge opera-
tions from 20k, 30k, 40k and 50k, word embedding size and
the number of RNN hidden units from 512 and 1024, batch
size from 4096 and 6000, initial learning rate from 0.0002 to
0.0007, dropout probability from 0.1 and 0.24.

When searching for a good hyper-parameter configura-
tion, we found that a more complex model, in terms of RNN
hidden size, was not necessarily needed to get better per-
formance on this corpus: when we increased the number of

4Due to time and computational resources limitation, we only tried a
subset of all the possible combinations.
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system dev2010 tst2010 tst2013 tst2014 tst2015
Manual: NMT (ST TED) on EN reference 23.96 27.54 26.23 22.30 25.07
Pipeline: NMT (ST TED) on ASR output 15.47 20.54 16.68 14.35 16.21
Manual: NMT (ST TED + WMT-Filtered) on EN reference 28.07 30.59 29.47 26.04 26.70

Table 5: BLEU comparison of NMT translating English reference (Manual) or ASR ouput (Pipeline). BLEU scores are evaluated
on development sets using multi-bleu.perl with the Moses tokenization.

RNN hidden units from 512 to 1024, the average BLEU score
dropped from 24.71 to 24. Another interesting finding was
that with other hyper-parameters fixed, when the number of
BPE operations increased, the BLEU score on the develop-
ment data tended to first go up and then decrease (see Table
4). Finally, the initial learning rate turned out to be an im-
portant hyper-parameter to tune. For example, we got 23.44
BLEU with initial learning rate 0.0003, but 24.18 BLEU with
0.0007.

3.4. Evaluation of Pipeline System

We show the main results of our pipeline systems in Table 5.
For the purpose of comparison, we provided the NMT sys-
tems with either the manual transcripts (Manual) or the out-
put of our ASR system (Pipeline), which is described in Sec-
tion 3.1. As expected for error cascading in pipeline systems,
BLEU scores drop substantially, by up to 36.4%, when trans-
lating noisy ASR outputs compared to translating the clean
English transcript.

A paired permutation test shows that Manual outper-
forms Pipeline statistically significantly with p-value < 1%.
NMT systems trained with good manual transcripts might be
intolerant to various ASR errors, and it is very likely they
will propagate the errors during decoding.

Additionally, the final row in Table 5 we show the BLEU
scores of the NMT system trained with additional WMT-
Filtered data. There is a large improvement, for example
from 23.96 to 28.07 on the dev2010. This confirms that
adding more bitext helps.

While the corpus-level BLEU score of the pipeline is
lower than the manual system, we did observe some inter-
esting variances at the level of individual sentences: it is not
the case that translations of ASR outputs are always worse
than translations of manual, clean transcripts. Figure 1 com-
pares the sentence-level BLEU scores in three different scat-
ter plots. For each sentence in tst2010, we have the English
transcript (EN-ref) and the resulting translation (DE-manual)
by our NMT system; we also have the English ASR output
(EN-ASR) and the resulting translation (DE-pipeline). Fi-
nally we have the correct German reference (DE-ref). We
then computed three sentence-level BLEU scores (with add-
one smoothing) as follows:

• Manual BLEU: BLEU of DE-manual vs. DE-ref

• Pipeline BLEU: BLEU of DE-pipeline vs. DE-ref

• ASR BLEU: BLEU of EN-ASR vs. EN-ref

Our goal is to compare ASR BLEU (which measures
whether the English sentence was difficult to transcribe) with
Manual/Pipeline BLEU. Our original hypothesis is that sen-
tences with low ASR BLEU should result in a larger differ-
ence in Manual BLEU minus Pipeline BLEU.

Interestingly, as seen in Figure 1 (c), there are individual
sentences where Manual BLEU is less than Pipeline BLEU.
An example is shown in Table 6. The difference between the
English reference and the ASR output is ”where it gets” vs
”what gets”, which are arguably both correct. However, the
NMT result is very different, one translating perfectly and
the other not. It appears that since NMT output has high
variance, i.e. it can output very different translations even
when the inputs are semantically similar.

4. End-to-End System
In this section, we describe our end-to-end speech translation
model and transfer learning from pre-trained ASR model.

4.1. Model for End-to-End Speech Translation

We used an attention-based encoder-decoder model for the
end-to-end speech translation model. The architecture of
the encoder is exactly the same as that in the ASR model
in Section 3.1 (VGG-like CNN layers followed by stacked
BiLSTM layers). The decoder includes two modification
from the ASR decoder: (1) adopting input-feeding mecha-
nism [18], and (2) adding scheduled sampling [16].

It is possible to integrate a language model during the
decoding stage (i.e. shallow fusion [20]) and also training
stage (i.e. deep fusion [21] and cold fusion [22]), but we did
not use any language models for the speech translation task
in this paper. We’ll leave them to the future work.

4.2. Transfer learning from ASR

In our preliminary experiments, it took too much time to train
end-to-end speech translation models from scratch, i.e. many
epochs are required for convergence. Therefore, we explored
methods to better initialize our end-to-end model.

Speech translation can be viewed as a combination of
ASR and MT tasks, so we can treat the encoder and de-
coder networks as having roles in ASR and MT, respectively.
Therefore, it is a natural choice to initialize the encoder with
that of a pre-trained ASR model. Initialing the decoder with
pre-trained MT model will be left to the future work.

Weiss et al. [23] shows improvements of BLEU scores
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English Reference But here’s where it gets interesting. NMT Result (Manual) Aber hier ist das, was interessant wird.
ASR Output But here’s what gets interesting. NMT Result (Pipeline) Aber hier wird es interessant.

Table 6: An example where Pipeline system outperforms the Manual system (100 sentBLEU vs. 6.5 sentBLEU). The German
reference for the utterance is Aber hier wird es interessant .
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Figure 1: Sentence-level BLEU of manual, pipeline and ASR system on tst2010. A linear least-squares regression is calculated
for each pair of systems.

by multi-task learning (MTL) with ASR task by sharing the
encoder. Berard et al. [24] also shows both MTL and pre-
training strategies lead to fast convergence and better results
for end-to-end speech translation. Here we chose the pre-
training strategy and transfer the weights of the encoder in
the ASR model to the end-to-end model prior to training.

4.3. Experiments

We did the same data preprocessing as speech transcription
in Section 3.2. We also built end-to-end speech translation
models with the ESPnet toolkit with a pytorch backend. The
differences of the architecture, optimization, and decoding
from speech transcription models are as follows:

• We did not use the CTC framework due to its mono-
tone assumption

• We used scheduled sampling with probability 0.2

• We ran for 30 epochs

• We did not perform beam search decoding (i.e. greedy
decoding)

• We did not use any language models (due to time con-
straints)

We use the official scripts from the organizer and calculated
case-sensitive BLEU scores with multi-bleu-detok.perl in the
Moses toolkit after detokenization. We report BLEU scores
in Table 7 for both pipeline systems and end-to-end speech
translation models (E2E). There are several observations:

First, we can confirm that better ASR models led to bet-
ter BLEU scores in the pipeline systems when comparing

Table 3 and Table 7. The two ASR models with 5k units
have the lowest WER scores, and the resulting two pipeline
systems (b) and (d) also achieved the best BLEU scores. Sec-
ond, it seems challenging to train an E2E speech translation
model from scratch. Transfer learning with parameters from
an existing ASR model gave consistent gains.

Finally, there are large differences between pipeline and
end-to-end systems. For example, on dev2010, E2E trained
from scratch achieved a BLEU of 4.44, E2E with transfer
from ASR achieved a BLEU of 6.71, and the pipeline sys-
tems achieved BLEU in the range of 14. This may be due
to data sparseness. Perhaps the explicit intermediate repre-
sentation of transcripts in the language of the speech input
is important for constraining the model complexity. Further,
10k wordpieces is a relatively large unit size for speech mod-
els and the data needs of an end-to-end model may be larger
than that of a pipeline model.

We show some examples of the end-to-end speech trans-
lation model transferred from pre-trained ASR (system (f) in
Table 7) in Table 8. Despite the low BLEU scores in general,
the end-to-end model sometimes do generate reasonable sen-
tences and correctly predicts keywords such as proper nouns
and numbers. Our system was robust to misspelling because
we used 10k units for the vocabulary. The official develop-
ment sets include many long sentences, and it appears that
our E2E model may be doing relatively worse compared to
Pipeline systems on long sentences.

5. Discussion
We described our pipeline and end-to-end speech translation
systems for IWSLT 2018. For the official evaluations, we
submitted the pipeline system (a) in Table 7 as a contrastive

157

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018



System Configuration dev2010 test2010 test2013 test2014 test2015
(a) Pipeline ASR (10k unit, 3 layer); NMT (ST TED) 14.22 13.62 14.21 11.73 10.68
(b) Pipeline ASR (5k unit, 3 layer); NMT (ST TED) 14.68 14.70 15.08 12.23 11.59
(c) Pipeline ASR (10k unit, 5 layer); NMT (ST TED) 14.54 13.05 14.60 11.73 11.16
(d) Pipeline ASR (5k unit, 5 layer); NMT (ST TED) 14.87 13.76 14.75 11.58 10.96
(e) E2E train from scratch 4.44 4.10 3.57 3.52 2.42
(f) E2E transfer learning from ASR parameters 6.71 6.21 6.01 5.08 4.51

Table 7: BLEU evaluated on the development sets using the official scripts provided by organizers. Note the results here are not
comparable to Table 5 due to differences in the tokenization and evaluation scripts.

EN(Ref) In the last five years we’ve added 70 million tons of CO2 every 24 hours – 25 million tons every day to the oceans.
DE (Ref) In den letzten 5 Jahren haben wir 70 Millionen Tonnen an CO2 produziert alle 24 Stunden – 25 Millionen Tonnen jeden Tag in die Ozeane.
DE (Hyp) In den letzten fnf Jahren haben wir die 70 Millionen Tonnen CO2 / h. Wir haben die Ostkste
EN(Ref) But not just any mission, it’s a mission that is perfectly matched with your current level in the game.
DE (Ref) Aber nicht nur irgendeine Mission, sondern eine Mission, die perfekt zu Ihrem aktuellen Level im Spiel passt, richtig?
DE (Hyp) Aber nicht nur die Mission, sondern nur eine Mission, die sich perfekt antreibt. Mit dem deren auf dem Spiel.

Table 8: Examples of the end-to-end speech translation model (system (f) in Table 7)

system and the E2E system (f) in Table 7 as the primary sys-
tem; they were our best systems at the time of submission.
Our main findings are that (1) pipeline systems can be very
strong systems, and that (2) more work is needed to train
end-to-end systems effectively, especially in small datasets.

For the official development sets, we had to use other
tools to segment audio files before decoding and then match
the number of references and hypotheses after decoding. We
found that this affected WER and BLEU scores seriously due
to misalignment. Therefore, the exact segmentation informa-
tion for acoustic features is desired for the future evaluation
in speech translation.
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Abstract

Multilingual neural machine translation (M-NMT) has re-
cently shown to improve performance of machine translation
of low-resource languages. Thanks to its implicit transfer-
learning mechanism, the availability of a highly resourced
language pair can be leveraged to learn useful representa-
tion for a lower resourced language. This work investigates
how a low-resource translation task can be improved within a
multilingual setting. First, we adapt a system trained on mul-
tiple language directions to a specific language pair. Then,
we utilize the adapted model to apply an iterative training-
inference scheme [1] using monolingual data. In the exper-
imental setting, an extremely low-resourced Basque-English
language pair (i.e., ≈ 5.6K in-domain training data) is our
target translation task, where we considered a closely re-
lated French/Spanish-English parallel data to build the mul-
tilingual model. Experimental results from an i) in-domain
and ii) an out-of-domain setting with additional training data,
show improvements with our approach. We report a transla-
tion performance of 15.89 with the former and 23.99 BLEU
with the latter on the official IWSLT 2018 Basque-English
test set.

1. Introduction
The amount and diversity of model training data have been
shown to affect the performance of Neural Machine Transla-
tion (NMT) system [2]. The direct relation between dataset
size and performance of NMT [3], calls for alternative ap-
proaches to improve low-resource language translation.

Multilingual models that constitute more than one lan-
guage pair has been shown to improve the translation perfor-
mance of the low-resources language direction [4, 5]. In it’s
simplified and most effective setting, building an M-NMT
system requires only an additional “language-flag” on the
data level. Then, the attentional encoder-decoder based NMT
model can be trained with the aggregation of several lan-
guage pairs. The flag functions as a mechanism to trigger
and direct the generation of target tokens in a specific target
language. Thus, when the training set is constructed with

(*) Work conducted while this author was at FBK.

the merge of several language directions, the latent transfer-
learning across languages within the conventional NMT ar-
chitecture showed to improve low-resourced language pairs.
However, M-NMT training mechanism is biased towards
generating the language pair with the largest portion of train-
ing data [1]. This bias will consequently limit the expected
level of improvement in translating low-resource language
pairs.

In this work, we propose a progressive adaptation of
a multilingual model to a single language pair. We cast
the adaptation stage in iterative training-inference operations
that utilize monolingual data. Assuming, the availability
of a low-resource language pair and a high resource re-
lated/language pairs data, we specifically explore the follow-
ing two mechanisms:

• Adapting a multilingual model trained with several
language directions to a specific low-resourced lan-
guage pair, with the aim to avoid ambiguities at the
time of inference.

• Then, applying an iterative training-inference using
monolingual data of the low-resourced pair, with the
aim to acquire a more cleaner pseudo-parallel corpus
for the next adaptation stage.

In our experimental setting, we apply the above two mech-
anisms for improving the extremely low-resourced (ELR)
Basque(EU)-English(EN) language pair. Then, with the ex-
perimental results and discussion we present our participa-
tion of the IWSLT-20181 shared task on Low Resource MT
of TED2 talks from Basque to English direction. We eval-
uated our approach with the i) ELR training condition in
a constrained in-domain data, and ii) by adding an out-of-
domain training data in addition to the in-domain. We train
both models in a similar language setting (i.e., the addi-
tional/related language pairs are French/Spanish-English).

For comparing our approach, we train a bilingual
(Basque-English) baseline and multilingual baseline model
by adding more data from the related language pairs. More
specifically, to build the M-NMT model Basque-French and

1https://sites.google.com/site/iwsltevaluation2018/TED-tasks
2https://wit3.fbk.eu/
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Basque-Spanish with a similar ELR condition, and French-
English and Spanish-English with the relatively high re-
source data size are added to the bilingual model. All
models share common configurations at training and infer-
ence time, unless stated differently. Models are trained fol-
lowing [4], preprocessing and training procedures using the
Transformer model [6].

In the following sections, we begin by introducing NMT
(§2). Following, we review the related work in multilingual
models and transfer-learning (§3). In Section 4, we describe
our model training approach, followed by dataset and pre-
processing, experimental settings, and baseline models (§5).
Finally, we give further analysis on the experimental results
in Section 6.

2. Neural Machine Translation
A standard state-of-the-art NMT system comprises an en-
coder, a decoder and an attention mechanism, which are
all trained with maximum likelihood in an end-to-end fash-
ion [7]. Although there are different variants of the encoder-
attention-decoder based approach, Recurrent variants being
the predominant until recently [8], this work utilizes the
“Transformer” model [6]. The encoder is purposed to en-
code a source sentence into hidden state vectors, whereas the
decoder uses the last representation of the encoder to predict
symbols in the target language. In a broad sense, the atten-
tion mechanism improves the prediction process by deciding
which portion of the source sentence to emphasize at a time
[9]. Nevertheless, in the Transformer architecture, the ap-
plication of attention spans to the representation of encoder
latent and decoder latent space.

The Transformer architecture works by relying on a self-
attention (intra-attention) mechanism, removing all the re-
current operations that are found in the RNN approach. In
other words, the attention mechanism is repurposed to com-
pute the latent space representation of both the encoder and
the decoder sides. However, with the absence of recurrence,
positional-encoding is added to the input and output embed-
dings. Similarly, as the time-step in a recurrent network,
the positional information provides the Transformer network
with the order of input and output sequences.

In our work, we use the absolute positional encoding, but
very recently the use of the relative positional information
has been shown to improve performance [10]. The model is
organized as a stack of encoder-decoder networks that works
in an auto-regressive way, using the previously generated
symbol as input for the next prediction. Both the decoder
and encoder can be composed of uniform layers, each built of
sub-layers, i.e., a multi-head self-attention layer and a posi-
tion wise feed-forward network (FFN) layer. The multi-head
sub-layer enables the use of multiple attention functions with
a similar cost of utilizing attention, while the FFN sub-layer
is a fully connected network used to process the attention
sublayers; as such, FFN applies two linear transformations
on each position and a ReLU [6].

3. Related Works
3.1. Multilingual NMT

Prior to the introduction of a shared attention mechanism
[11], early works in multilingual NMT utilizes separate en-
coder, decoder and an attention mechanism to support the
translation of either many-to-one [12], or one-to-many [13]
language directions. Moreover, Firat et al. [11] intro-
duced a many-to-many system, however, relying on separate
encoder-decoder setup. In a simplified yet delivering better
performance [4] and [5] introduced a “language-flag” based
approach that shares the attention mechanism and a single
encoder-decoder networks to enable multilingual models. In
this work, we follow the Johnson et al. [4] approach for
prepending a language-specific flag at the source side of the
training and inference examples.

3.2. Transfer Learning and Model Adaptation

Zoph et al., (2016) [14], proposed how transfer-learning be-
tween two NMT models can improve a low-resourced MT
task. In their approach, a language pair with the relatively
large amount of data is first utilized to train a parent model,
then the encoder-decoder parameters are transferred to ini-
tialize a child model for a low-resourced language pair. After
initializing, in the fine-tunning stage, the parameters of the
child decoder network is fixed. The main motivation behind
updating only the encoder parameters is that the decoder lan-
guage across the parent-child models stays the same. Simi-
larly, the parent-child approach has been extended to analyze
the effect of using related languages on the source side of the
encoder-decoder network [15].

In a related way to benefit the low-resource language
from the high resourced pair [16] proposed an alternative
transfer-learning approach built on a component that allows
to share lexical and sentence level representations of multi-
ple source language to a single target language. In a prior
work, a multi-source approach where two or more encoders
shares an attention mechanism has been suggested in [17], to
address the ambiguities of translating a source token to a sin-
gle target language. Unlike [18] where a single multilingual
model is used for several language translations [19] showed
how adapting the multilingual model on a specific language
pair improves performance. Recently [20] explored the ad-
vantage of initializing a low-resource language pair training
using a pre-trained multilingual model showing a significant
improvement over baseline approaches.

4. Adaptation from a Multilingual Model
This work aims to exploit the transfer-learning across lan-
guages, however, instead of the parent-child strategy [14],
we rely on using a multilingual model as in [4] that allows
to abstract the representation of several languages in a single
attentional encoder-decoder model. We hypothesis if data
is received both for the low and high resourced language
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pairs, training a single model with the concatenation of all the
data and progressively fine tunning it with the low-resource
(target-task) language pair can avoid possible ambiguities
between languages at the time of inference.

First, we train a model with all the available language
pairs (including the target-task). Second, we adapt the best
performing model to the target-task language pair. Unlike
the recently proposed approach [20], we adapt using the
same target-task data that has been utilized for training the
baseline multilingual model. The main reason behind this
is that the target-task data is already received at time of
training the multilingual model. Then, the (latest) adapted
model is used to perform back-translation [21] in a target →
source direction or an iterative dual-inference in a source ↔
target directions [1]. However, both inference approaches
are used to create a source side synthetic data, the dual-
inference requires an available monolingual data both from
the source and target language. More importantly, the fact
that we adapt from the multilingual to a bi-directional model
allows us to avoid the use of auxiliary models (i.e., a sepa-
rate model trained in a target → source direction) to perform
the inference operations. After the inference stage, we con-
tinue training the model by combining the target-task and the
newly formed source (synthetic) → target parallel data, con-
sequently creating a progressive adaptation stages.

In the experimental section, the adaptation and progres-
sive update of the multilingual model to the single language
pair (Basque-English) target-task are evaluated in two set-
tings:

• iELR, an extremely low-resource language pair
trained and evaluated using an in-domain parallel and
monolingual data.

• oELR, an extension of the iELR training condition
with an additional out-of-domain parallel and mono-
lingual data, as described in Section 5

In the following Section, the details of the experimental setup
are given for the two evaluation scenarios.

5. Experiments
5.1. Dataset

The experimental setting covers the Basque (EU), English
(EN), French (FR), and Spanish (ES) languages. The ELR
language pair (EU-EN) and the related language pairs (FR-
EU/EN, and ES-EU/EN) are categorized into the in-domain
and out-of-domain settings. The in-domain data are ex-
tracted from the publicly released shared task dataset, WIT3

TED corpus [22]. Where as the the out-of-domain dataset
is collected from the WMT evaluation campaign PaCo cor-
pus [23, 24], Opus corpus [25], and the Open Data Euskadi
Repository (OpenData)3. Monolingual datasets for the Eu-
EN pair are extracted from the TED, Opus18, and OpenData

3http://hltshare.fbk.eu/IWSLT2018/OpendataBasqueSpanish.tgz

TED Opus16/18 PaCo OpenData
EU-EN 5623 856314 130359 -
EU-FR 5815 689358 - -
EU-ES 5546 840458 - 926203
FR-EN 287134 - - -
ES-EN 277093 - - -
EU-Mono - - - 741254
EN-Mono 242831 503970 - -

Table 1: Languages and dataset size of the training set. TED
represents the in-domain data, whereas the Opus from the
2016 and 2018 (excluding the FR-EN and ES-EN pairs),
PaCO for the EU-EN pair, and OpenData for the EU-ES pair
represent the out-of-domain pairs.

sources and preprocessed by removing the overlapping seg-
ments with the parallel data. Note; EN is the only available
in-domain monolingual data, whereas the rest is collected
from the out-of-domain sources based on availability. Ta-
ble 1 summarizes the source and data size of each language
direction.

For evaluating the target-task (EU-EN) a development set
of 1140 segments and for reporting the official submission
results, the 2018 test set constituting 1051 source side seg-
ments are used from the TED talks in-domain data.

5.2. Preprocessing

We first tokenize the raw data and remove sentences longer
than 70 tokens. As in [4], we prepend a “language-flag”
on the source side of the corpus for all multilingual mod-
els. The internal sub-word segmentation [26] provided by
the Tensor2Tensor library4 is used before each training and
inference. Note that prepending the “language-flag” on the
source side of the corpus is specific to the multilingual mod-
els. Following the recommendation in [27], the number of
segmentation rules is set to 16K for the in-domain data and
32K for the out-of-domain data.

5.3. Experimental Settings

All systems are trained using the Transformer [6] model im-
plementation in the Tensor2Tensor library. For all train-
ings, we use the Adam optimizer [28], with an initial
learning rate constant of 2 and a dropout [29, 30] of 0.2.
The learning rate is increased linearly in the early stages
(warmup training steps=16, 000) and afterward it is de-
creased with an inverse square root of the training step.

Considering the two training scenario (i.e., iELR and
oELR), we utilize two model configurations; i) for the in-
domain data a 512 embedding and hidden units dimension,
and 6 layers of self-attention encoder-decoder network, and
ii) for an out-of-domain scenario the dimension is set to
1024. The training batch size is of 4, 096 sub-word tokens.

4https://github.com/tensorflow/tensor2tensor/tree/v1.6.2/tensor2tensor
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Round NMT M-NMT iELR oELR

Eu-En
I 3.10 13.37 12.96 22.48
II - - 15.65 22.72
III - - 15.15 23.14

Table 2: BLEU results on the dev2018 using the EU-EN sin-
gle language pair NMT and the multilingual M-NMT baseline
models, as compared to the in-domain iELR and the out-of-
domain oELR adapted multilingual models from three train-
ing rounds. The bold highlight shows the best performing
training rounds.

At inference time, we employ a beam size of 4 and a batch
size of 32.

Following [6], iELR experiments are run upto 100k
training steps, whereas oELR experiments are run upto 400K
steps, i.e., all models are observed to converge within these
steps. The consecutive adaptation converged in a variable
training steps, however, to make sure a convergence point is
reached, all restarted experiments are run for additional 50K
steps. Then, the best performing checkpoint on the dev set
is used in the next training stage. All models are trained on
a Tesla V100-pcie-16gb with a single GPU for iELR
and 4 GPU’s for oELR.

5.4. Baseline Models

Baseline: models are trained as a term of comparison in two
settings, i) using only the available in-domain EU-EN data,
refereed to as NMT, and ii) by adding the related language
(EU-FR/ES and FR/ES-EN) in-domain data on the EU-EN
target-task. The latter forms a multilingual (M-NMT) baseline
model. The following section, discusses the results and
the comparison between the baselines and the adapted model
types.

6. Results and Discussion
The baseline models (NMT and M-NMT) compared to against
the adapted multilingual (iELR and oELR) models are re-
ported in Table 2. The single language pair model trained
with the in-domain (≈5.6K) training data showed a perfor-
mance of 3.10 BLEU. As we expected, the poor performance
is directly related to the small amount of training data. In
case of the M-NMT, we observed an improvement of +10.27
over the NMT with a performance of 13.37 BLEU. As dis-
cussed in Section 1, the transfer-learning across languages,
that arise from the additional EU-ES/FR and FR/ES-EN in-
domain language pairs highly contributed for the observed
improvement. Moreover, the experiments with our sugges-
tion have been run for two consecutive rounds.
In-Domain Setting. In the first adaptation stage, the iELR
model showed no significant difference with the baseline
M-NMT. However, the adaptation stage helps to narrow the
translation direction to the target task and avoid possible am-

NMT M-NMT iELR oELR

Basque-English - - 15.89 23.99

Table 3: Official BLEU results of tst2018 evaluated using the
in-domain iELR and the out-of-domain oELR best perform-
ing adapted multilingual models.

biguities for the inference stage. In the second round the
iELR model showed a +2.28 BLEU improvement over the
M-NMT (13.37 BLEU) baseline. The improvement is ex-
pected for the reason that the model is trained with the addi-
tional pseudo-parallel corpus from the back-translation step
of the EN in-domain monolingual data to the EU target. In
the consecutive round, however, the model performance de-
grades after the back-translation stage. This is likely caused
by poorly generated source side synthetic EU from the EN
monolingual data. Thus, for the final evaluation we take the
best performing model from the second training round.
Out-of-Domain Setting: oELRmodels are trained in a simi-
lar training strategy with iELR, except the availability of ad-
ditional parallel and monolingual (both for EU and EN, see
Table 1) data. The relatively higher amount of training data,
contributed for the larger gain of the oELRmodel over the in-
domain training condition. Compared to the baseline models
(NMT and M-NMT), oELR showed the highest performance
with 23.14 BLEU score at the third training round. Unlike
the performance degradation observed in the iELR setting,
the availability of monolingual data both for EU and EN
benefits each training-inference stage. However, with only a
0.66 BLEU gain over the initial model after three rounds, we
observed that the domain mismatch between parallel (EU-
EN) and the monolingual data disadvantages the expected
improvement using the training-inference approach.

In case of, the official evaluation campaign, this work
focused on a primary submission using the oELR model and
a contrastive submission using the in-domain iELR model.
Table 3, shows the performance of the two models on test-
2018.

An interesting aspect from the multilingual adaptation
and the iterative training-inference stages is that improve-
ments are observed within 6k-20k steps. Meaning, the con-
tinued training approach from the latest adapted model shows
a faster convergence than training a model from scratch.
Overall, our approach aimed at training a baseline multilin-
gual model for a progressive adaptation to a target-task (i.e.,
EU-EN), and applying an iterative training-inference scheme
using monolingual corpora showed to improve over the base-
line model. Our results suggest that the progressive adapta-
tion is critical when the target-task language pair has new ad-
ditional data at each stage. The experimental findings have
brought our attention for a further study on how to adapt a
multilingual model and what type of monolingual data to uti-
lize in the training-inference stages.

163

Proceedings of the 15th International Workshop on Spoken Language Translation
Bruges, Belgium, October 29-30, 2018



7. Conclusions
In this work, we showed how progressively adapting a multi-
lingual model to an extremely low-resourced (EU-EN) lan-
guage pair improves the translation performance, with an
additional training-inference stage that utilizes monolingual
data. To evaluate the approach, the experimental setting
is carried out in an in-domain (iELR) and out-of-domain
(oELR) scenarios. Results show a significant improvement
over a single language pair model (NMT), as well as a 2.28
BLEU increase over the baseline M-NMT model in an in-
domain setting. As future work, we will focus on improving
the joint iterative training-inference and progressive adapta-
tion stages.
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Abstract

Most modern neural machine translation (NMT) systems
rely on presegmented inputs. Segmentation granularity im-
portantly determines the input and output sequence lengths,
hence the modeling depth, and source and target vocabu-
laries, which in turn determine model size, computational
costs of softmax normalization, and handling of out-of-
vocabulary words. However, the current practice is to use
static, heuristic-based segmentations that are fixed before
NMT training. This begs the question whether the chosen
segmentation is optimal for the translation task. To over-
come suboptimal segmentation choices, we present an algo-
rithm for dynamic segmentation, that is trainable end-to-end
and driven by the NMT objective. In an evaluation on four
translation tasks we found that, given the freedom to navi-
gate between different segmentation levels, the model prefers
to operate on (almost) character level, providing support for
purely character-level NMT models from a novel angle.

1. Introduction
Segmentation of input sequences is an essential preprocess-
ing step for neural machine translation (NMT) and has been
found to have a high positive impact on translation quality in
recent WMT shared task evaluations [1, 2]. This success can
be explained statistically, since shorter segments are benefi-
cial for reducing sparsity: They lower the type-to-token ratio,
decrease the number of out-of-vocabulary (OOV) tokens and
singletons, which improves the coverage of unseen inputs.

Two subword segmentation methods are presently the
state-of-the-art in NMT: the byte-pair encoding (BPE), that
starts with a dictionary of single characters and iteratively
creates a new entry from the two currently most frequent en-
tries [3, 4], and a similar wordpiece (WP) model [5].

While being empirically more successful than word-
based NMT, both BPE and WP are preprocessing heuristics,
they do not account for the translation task or the language
pairs at hand (unless applied to both sides jointly), and re-
quire additional preprocessing for languages that lack ex-
plicit word separation in writing. Being used in a pipeline
fashion, they make it impossible for an NMT system to re-
segment an unfavorably presplit input and require consistent

Work was done while the first author was interning at Amazon, Berlin.

application of the same segmentation model during testing,
which adds an integration overhead and contributes to the
‘pipeline jungles’ in production environments [6].

On the other extreme from word-based NMT models lie
purely character models. Their advantages are smaller vo-
cabularies, thus smaller embedding and output layers, allow-
ing for more learning iterations within a training time budget
to improve generalization [7], and no preprocessing require-
ments. At the same time, longer input sequences aggravate
known optimization problems with very large depths of time-
unrolled RNNs [8] and may require additional memory for
tracking gradients along the unrolling steps.

In this work1, we pose the following question: what
would the input segmentations look like if the NMT
model could decide on them dynamically? Instead of
heuristically committing to a fixed (sub)word- or character-
segmentation level prior to NMT training, this would allow
segmentation for each input to be driven by the training ob-
jective and avoid solving the trade-offs of different levels
by trial and error. To answer this question, we endow an
NMT model with the capacity of adaptive segmentation by
replacing the conventional lookup embedding layer with a
‘smart embedding’ layer that sequentially reads input char-
acters and dynamically decides to group a block of them
into an output embedding vector, feeding it to the upstream
NMT encoder before continuing with the next block (with
an optional reverse process on the target side). To signal
that a block of characters, encoded as an embedding vec-
tor, is ready to be fed upstream, we use accumulated val-
ues of a scalar halting unit [9], which learns when to output
this block’s embedding. It simultaneously affects weight-
ing probabilities of intermediate output vectors that com-
pose the output embedding. Thanks to this weighting, our
model is fully differentiable and can be trained end-to-end.
Similarly to BPE, it has a hyper-parameter that influences
segmentation granularity, but in contrast to BPE this hyper-
parameter does not affect the model size. While we eval-
uate our on-the-fly segmentation algorithm on RNN-based
NMT systems, it is transferable to other NMT architectures
(CNN [10] or Transformer [11]), since it only replaces the
input embedding layer. Empirically, we find a strong pref-
erence of such NMT models to operate on segments that are

1Extended report: https://arxiv.org/abs/1810.01480.
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only one to a few characters long. This turns out to be a rea-
sonable choice, as in our experiments character-level NMT
systems of smaller or comparable size were able to outper-
form word- and subword-based systems, which corroborates
results of [12, 13]. Given this finding and the unique ad-
vantages of character-level processing (no pipelining, no to-
kenization, no additional hyperparameters, tiny vocabulary
and memory, and robustness to spelling errors [14]), we
hope that character-level NMT, and in general character-level
sequence-to-sequence learning, will receive more attention
from researchers.

Note that, although our character-based models outper-
form (sub)word-based ones with similar architectures on
some datasets, we are not seeking to establish a new state-of-
the-art in NMT with our model. Our goal is to isolate the ef-
fects of segmentation on quality by introducing a flexibility-
enhancing research tool. Therefore, in the comparisons be-
tween (sub)word- and character-based models we purposely
avoided introducing changes to our baseline RNN NMT ar-
chitecture beyond upgrading the embedding layer.

2. Related Work
To tackle the OOV problem in word-level models, [15] pro-
posed a hybrid model that composes unknown words from
characters both on encoder and decoder side. While their ap-
proach relies on given word boundaries, they report a purely
character-based baseline performing as well as a word-based
model with unknown word replacement, but taking 3 months
to train, which seems to have cooled off the NMT commu-
nity in investigating fully character-based models as an alter-
native to (sub)word-based ones. Unlike [15], we found that
despite the training speed being slower than for (sub)word
vocabularies, it is possible to train reasonable character-level
models within a few weeks. To combine the best of both
worlds, [16] proposed hierarchical en-/decoders that receive
inputs on both word- and character-level. The encoder learns
a weighted recurrent representation of each word’s charac-
ters and the decoder receives the previous target word and
predicts characters until a delimiter is produced. Similar to
our work, they find improvements over BPE models. The
idea to learn composite representations of blocks of charac-
ters is similar to ours, but their approach requires given word
boundaries, which our model learns on-the-fly. [12] com-
bined a standard subword-level encoder with a two-layer, hi-
erarchical character-level decoder. The decoder has gating
units that regulate the influence of the lower-level layer to
the higher-level one, hence fulfilling a similar purpose as our
halting unit. This model outperforms a subword-level NMT
system, and achieves state-of-the-art on a subset of WMT
evaluation tasks. While not requiring explicit segmentation
on the target side, the model still relies on given source seg-
mentations. Finally, [14] proposed a fully character-level
NMT model. They mainly address training speed, which [15]
identified as a problem, and introduce a low-level convolu-
tional layer over character embeddings to extract information

from variable-length character n-grams for higher-level pro-
cessing with standard RNN layers. Thus, overlapping seg-
ments are modelled with a length depending on the filters.

Perhaps closest to our work is [13], where each layer of a
hierarchical RNN encoder is updated at different rates, with
the first layer modelling character-level structures, the fol-
lowing modelling sub(word)-level structures. They introduce
a binary boundary detector, similar to our halting unit, that
triggers feeding of a representation to the next level, so that
latent hierarchical structures without explicit boundary infor-
mation are learnt. Unlike our fully-differentiable model, such
discrete decisions of the boundary detector prohibit end-to-
end differentiability, forcing a recourse to the biased straight-
through estimator [17]. On the other hand, while our model
relies on a to-be-tuned computation time penalty, [13] do not
impose constraints on the number of boundaries.

3. Jointly Learning to Segment and Translate
Instead of committing to a single segmentation before NMT
model training, we propose to learn the segmentation-
governing parameters along with the usual network param-
eters in a end-to-end differentiable manner. With this ap-
proach, we get rid of pipelining and pre-/postprocessing,
and can adaptively segment arbitrary inputs we encounter
during training or testing. Our segmentations are context-
dependent, i.e. the same substring can be segmented into dif-
ferent parts in different contexts. Being able to smoothly
interpolate between word-based and character-based models
we allow the model to find a sweet spot in between.

We extend the Adaptive Computation Time (ACT)
paradigm [9], where a general RNN model is augmented
with a scalar halting unit that decides how many recurrent
computations are spent on each input. For segmentation, we
use the halting unit to decide how many inputs (characters)
a segment consists of. The output of the ACT module can
thus be thought of as an ‘embedding’ vector for a segment
that replaces the classic lookup embedding for (sub)words in
standard NMT models. While our model can in principle use
larger units as elementary inputs, we will focus on charac-
ter inputs to be able to model the composition of arbitrary
segments. That means that we only add a small amount of
parameters to a basic character-based model, but explicitly
model higher-level merges of characters into subwords.

3.1. ACT for Dynamic Depth

Here we summarize the ACT model [9]. It is applicable to
any recurrent architecture that transforms an input sequence
x = (x1, . . . , xT ) into outputs o = (ō1, . . . , ōT ) via com-
puting a sequence of states s = (s1, . . . , sT ) through a state
transition function S on an embedded input Ext and a linear
output projection defined by matrix Wo and bias bo:

st = S(st−1, Ext), ot = Wost + bo (1)

Instead of stacking multiple RNN layers in S to achieve
increased complexity of an RNN network, the ACT model
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Figure 1: Diagram of the ACT-ENC encoder. Note the dif-
ferences to the original ACT model: An input is here read on
every internal recurrent iteration (gray arrows) and the halt-
ing unit (red stop sign) is repurposed to trigger feeding of
an encoded embedding vector of a block of characters to the
upstream NMT layers.

dynamically decides on the number of necessary recurrent
steps (layers) for every input xt. This saves computation on
easy inputs, while still being able to use all of the processing
power on hard inputs before emitting outputs. Concretely, an
ACT cell performs an arbitrary number of internal recurrent
applications of S for each input xt:

snt =

{
S(s̄t−1, Ext), if n = 1

S(sn−1
t , Ext), otherwise

(2)

The total number of internal steps is N(t) = min{n′ :∑n′

n=1 h
n
t ≥ 1− ǫ}, where ǫ ≪ 1 and hn

t is the scalar output
of sigmoid halting unit,

hn
t = σ(Whs

n
t + bh). (3)

Once halted, the final output ōt and state s̄t (which is fed to
the next ACT step in (2)) are computed as weighted means
of intermediate outputs and states:

s̄t =

N(t)∑

n=1

pnt s
n
t , ōt =

N(t)∑

n=1

pnt o
n
t (4)

where probabilities pnt are defined as

pnt =

{
R(t), if n = N(t)

hn
t , otherwise

(5)

and remainders R(t) = 1−∑N(t)−1
n′=1 hn′

t . Finally, to prevent
the network from pondering on an input for too long, the
remainder R(t) is added as a penalty to the RNN training
loss (usually cross-entropy (XENT)) with a weight τ :

LACT = LXENT + τR(t). (6)

Thanks to (4), the model is deterministic and differentiable.

3.2. ACT for Dynamic Segmentation

We now describe how to use the ACT paradigm to enhance
an encoder for dynamic segmentation on the source side
(ACT-ENC). We reuse the idea of halting units, mean field
updates and τ -penalized training objective, but instead of
learning how much computation is needed for each atomic
input, we learn how much computation to allow for an ag-

gregation of atomic inputs, i.e. one segment.
The input to an ACT-ENC cell is a sequence of one-hot-

encoded characters x = (x1, . . . , xTx). The ACT-ENC, de-
picted in Figure 1, receives one input xt at a time and de-
cides whether to halt or not. In the case of no halting, the cell
proceeds reading more inputs; if it halts, it produces an out-
put ‘embedding’ ō of a block of characters read so far, and
the cell resets for reading the next block. The sequence of
the output embeddings o = (ō1, . . . , ōTo) is then fed to up-
stream standard (possibly bidirectional) NMT encoder lay-
ers, replacing the usual, one-hot encoded, (sub)word lookup
embeddings. The length of o is variable: The more fre-
quently ACT-ENC halts, the more embeddings are gener-
ated. In extreme cases, it can generate one embedding per
input (To = Tx) or just one embedding for the full sequence
of inputs (To = 1).

Algorithm 1 ACT-ENC
Input: Weights Wo, bo,Wh, bh, transition function S , em-

beddings Esrc, inputs x = (x1, . . . , xTx), threshold ǫ.
Output: Outputs o = (ō1, . . . , ōTo), remainder R.

1: o = [ ] ⊲ empty sequence
2: R = 0, H = 0 ⊲ init remainder and halting sum
3: s̄ = 0, ō = 0, s0 = 0 ⊲ init mean state and output
4: for t = 1 . . . Tx do ⊲ loop over inputs
5: st = S(st−1, Esrc xt) ⊲ new state
6: ot = Wost + bo ⊲ new output
7: ht = σ(Whst + bh) ⊲ halting score
8: f = [[H + ht ≥ 1− ǫ]] ⊲ halting flag
9: pt = (1− f)ht + f (1−H) ⊲ halting probability

10: H = H + ht ⊲ update halting sum
11: s̄ = s̄+ ptst, ō = ō+ ptot ⊲ mean state and output
12: R = R+ (1− f)ht ⊲ increment remainder
13: if f then
14: o = o⌢[ō] ⊲ append output
15: st = s̄ ⊲ overwrite for next step
16: s̄ = 0, ō = 0, H = 0

17: R = (1−R)/t ⊲ normalize remainder

In more detail, ACT-ENC implements the pseudocode
given in Algorithm 1. Let S(st−1, it) be any recursive com-
putation function (in this work we use GRUs) of an RNN that
receives a hidden state st−1 and an input vector it at time
step t and computes the new hidden state st. In line 5 this
function is computed on the regular previous state or, if there
was a halt in the previous step (line 13), on the mean state
vector s̄ that summarizes the states of the previous segment
(line 15, cf. (4), 1st eq.). Per-step outputs ot are computed
from the hidden states st with a feed-forward layer (line 6,
cf. (1), 2nd eq.). A sigmoid halting unit computes a halting
score in each step (line 7, cf. (3)). The halting probability
for step t is either the halting score ht or the current value
of remainder 1 − H to ensure that all halting probabilities
within one segment form a distribution (line 9, cf. (5)). ǫ
is set to a small number to allow halting after a single step.
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Whenever the model decides to halt, an output embedding ō
is computed as a weighted mean of the intermediate out-
puts of the current segment (line 14, cf. (4), 2nd eq.). The
weighted mean on the one hand serves the purpose of cir-
cumventing stochastic sampling, on the other hand can be
interpreted as a type of intra-attention summarizing the in-
termediate states and outputs of the segment. The halting
scores from each step are accumulated (line 12) to penal-
ize computation time as in (6). The hyperparameter τ here
controls the segment length: The higher its value, the more
preference will be given to smaller remainders, i.e. shorter
segments. We introduce an additional normalization by input
length (line 17), such that longer sequences will be allowed
more segments than shorter sequences. This implementation
exploits the fact that ACT-ENC outputs are weighted means
over time steps and updates them incrementally. The algo-
rithm allows efficient minibatch processing by maintaining a
halting counter that indicates which embedding each current
intermediate output in the batch contributes to. Incremental
updates of embeddings and states are achieved with masks
depending on the halting position.

4. Experiments
We reimplemented the Groundhog RNN encoder-decoder
model with attention [18] in MxNet Gluon to allow for
dynamic computation graphs. We report results on four
language directions and domains, for word-, subword-,
character-level and ACT-ENC segmentation: German-to-
English TED talks, Chinese-to-English web pages, Japanese-
to-English scientific abstracts and French-to-English news.
Table 1 gives a data overview.

The IWSLT data is split and processed as in [19]; since
it comes pretokenized and lowercased, models are evaluated
with tokenized, lowercased BLEU (using sacrebleu [20])
and chrF scores on character bigrams [21]. For WMT, we
used the 2014 dataset prepared for [18], additionally filtering
the training data to include only sequences of a lengths 1
to 60, and models are evaluated with cased BLEU and chrF
(sacrebleu, with the “13a” tokenizer).

The CASIA and ASPEC data are, respectively, from the
2015 China Workshop on MT (CWMT), used without pre-
processing and with sampled dev/test sets, and from the
WAT 2017 SmallNMT shared task, pretokenized with WP.
Both datasets have BPE and WP vocabularies of around 16k
for each side, and we report cased BLEU and chrF on them.

Hyperparameters. All models are trained with
Adam [22] and a learning rate of 0.0003, halved whenever
the validation score (tokenized BLEU) has not increased for

Data Domain Lang Train Dev Test

IWSLT TED talks de-en 153,352 6,970 6,750
CASIA web zh-en 1,045,000 2,500 2,500
ASPEC sci. abstracts ja-en 2,000,000 1,790 1,812
WMT news fr-en 12,075,604 6,003 3,003

Table 1: Data statistics (number of parallel sentences).

Data Model BLEU chrF Param SegLen TrainTime

IWSLT
de-en

Word 22.11 0.44 80.5M 4.66 23h
BPE 25.38 0.49 46.5M 4.09 20h
Char 22.63 0.46 13.4M 1.00 1d22h
ACT-ENC 22.67 0.46 13.5M 1.88 9d21h

CASIA
zh-en

BPE 10.59 0.37 49.9M 1.72 18h
Char 12.60 0.40 21.0M 1.00 10d6h
ACT-ENC 9.87 0.36 21.3M 1.006 3d13h

ASPEC
ja-en

WP 21.05 0.53 50.0M 2.07 4d4h
Char 22.75 0.55 15.6M 1.00 24d15h
ACT-ENC 15.82 0.46 15.6M 1.0007 15d4h

WMT
fr-en

Word 20.32 0.49 80.5M 5.19 4d9h
BPE 27.02 0.55 86.0M 4.05 3d23h
Char 24.25 0.53 14.1M 1.00 9d
ACT-ENC 13.74 0.42 14.2M 1.82 13d8h

Table 2: Results on test sets for 1-layer models, and num-
ber of parameters and average source segment lengths on dev
sets. Time to reach stopping criterion is in (d)ays and (h)ours.

3 validations. Training stopped when the learning rate has
been decreased 10 times in a row. All models use recurrent
cells of size 1,000 for the decoder, with a bidirectional en-
coder of size 500 for each direction, input and output em-
bedding of size 620, and the attention MLP of size 1,000,
all following [18]. When multiple encoders layers are used,
they are all bidirectional [23] with attention on the upper-
most layer. The ACT layer for ACT-ENC models has size 50
for IWSLT, CASIA and ASPEC, and 25 for WMT (picked
from {25, 50, 75, 100, 150}). The word-based models on
IWSLT and WMT have a vocabulary of 30k for each side,
the BPE models have separate 15k vocabularies for IWSLT
and a joint 32k vocabulary for WMT. For IWSLT, CASIA
and ASPEC all characters from the training data were in-
cluded in the vocabularies, resulting in vocabulary sizes of
117 (de) and 97 (en), 7,284 (zh) and 166 (en), and 3,212 (ja)
and 233 (en), respectively. For WMT the vocabularies in-
cluded the 400 most frequent characters on each side. Word-
and BPE-based models are trained with minibatches of size
80, character-based models with 40. The maximum sequence
length during training is 60 for word- and BPE-based mod-
els, 200 for character-based models and 150 for ACT-ENC,
to fit into available memory. τ = 1.0 delivered the highest
BLEU score for IWSLT and CASIA, τ = 0.8 for WMT and
τ = 0.7 for ASPEC. Following [9], we fixed ǫ = 0.01 in all
the experiments. During inference, we use beam-search with
a beam size of 5 and length-normalization.

Evaluation Results. Table 2 lists the results for the most
comparable, 1-layer, configuration. BPE/WP models expect-
edly outperform word-based models, however word-based
models are also outperformed by character-based models.
The picture is similar w.r.t. the chrF with even smaller rel-
ative differences. The ACT-ENC model with one unidirec-
tional ACT layer manages to match the 1-layer bidirectional
character-based model on IWSLT. But it does not reach the
results of other models on CASIA and ASPEC, which can
be explained by increased complexity of doing simultane-
ous segmentation during training on sentences longer than
the average sentence length in IWSLT. However, the main
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Data Model BLEU chrF Param SegLen TrainTime

IWSLT
de-en

Word, 4L 24.54 0.45 97.0M 4.66 1d8h
BPE, 1L 25.38 0.49 46.5M 4.09 20h
Char, 5L 28.19 0.51 26.9M 1.00 3d10h
ACT-ENC, 3L 25.10 0.49 25.6M 1.31 9d7h

CASIA
zh-en

BPE, 3L 11.01 0.38 58.9M 1.72 24h
Char, 3L 13.43 0.42 30.0M 1.00 5d6h
ACT-ENC, 2L 10.35 0.37 21.3M 1.00 10d

ASPEC
ja-en

WP, 3L 22.02 0.55 61.4M 2.07 4d2h
Char, 1L 22.75 0.55 15.6M 1.00 24d15h
ACT-ENC, 1L 15.82 0.46 15.6M 1.0007 15d4h

WMT
fr-en

Word, 2L 21.04 0.48 94.0M 5.19 4d16h
BPE, 3L 27.93 0.56 98.0M 4.05 5d3h
Char, 6L 27.23 0.55 27.6M 1.00 18d13h
ACT-ENC, 2L 14.01 0.43 21.7M 1.0001 9d10h

Table 3: Results on respective test sets after tuning the num-
ber of encoder (L)ayers (from 1 to 6) on the dev set.

finding here is that ACT-ENC recovers an almost character-
level segmentation (“SegLen” column in Table 2). On the
IWSLT dev set, the average segment length is only 1.88, with
a maximum of 5 characters per segment. For CASIA and
ASPEC domains, and with the larger datasets than IWSLT,
the ACT-ENC segmentations becomes more fine-grained:
The average segment length is, respectively, just 1.006 and
1.0007 on the dev set (max. 2 chars per segment). Given
that the character model outperforms the BPE/WP models,
it is not surprising that ACT-ENC converged to the charac-
ter segmentation. We hypothesize that ACT-ENC could not
improve over the 1-layer bidirectional character model be-
cause of complexity of identifying segments in Chinese and
Japanese, unidirectionality of its initial layer, and increased
hardness of optimization of character-based models with ex-
tra non-linearities [24], that causes earlier convergence to
poorer minima in many runs. Similarly for WMT, failing
to match the performance of the character model could be
caused by harder optimization task on particularly long sen-
tences in the WMT data, and unidirectionality of ACT-ENC.
The ACT-ENC’s segment length is 1.82 (max. 6 chars), again
close on average to a purely character segmentation.

Inspired by the ACT-ENC’s recovery of almost charac-
ter segmentation and by the competitive performance of pure
character-based models, we decided to verify if the advan-
tage of character-level processing carries over to multiple
layers. Since the character models are much smaller than
their word-/BPE-based counterparts, one should allow mul-
tiple layers (consuming the same or less memory) to make up
for the difference in number of parameters for fairer compar-
ison. This also aimed to verify whether an increased number
of non-linearities (one of ACT’s benefits [25]) plays a role.

Table 3 shows the test results after tuning the number of
bidirectional encoder layers, from 1 to 6, on dev sets. First,
we observe the modest parameter number of character mod-
els even with multiple layers, that allows them to take ad-
vantage of deeper cascades of non-linearities while staying
well below the memory budget of (sub)word-based 1-layer
models. Second, comparing to Table 2, we again confirm
the negative correlation of quality and segment length for
ACT-ENC. Finally, we discover that BPE/WP models are

outperformed by character-based models with multiple en-
coder layers, achieving gains of 2.8 BLEU points on IWSLT,
0.7 on ASPEC, and losing only 0.7 on WMT (with a minor
decrease in chrF), despite having at least 3.5 times fewer pa-
rameters. Such ranking of character- and BPE-based models
on WMT might be explained by much longer sentences in
the corpus, compared other corpora, since the ability of char-
acter and ACT-based models to cover unseen input is limited
by the maximum training sequence length limit (here 200
characters), which on WMT data crops 30.5% of sentences.

Analysis of Segmentation and Outputs. Randomly se-
lected translation examples from the IWSLT dev set and their
segmented sources are given in Table 4. In general, when
encountering rare inputs, word-based models fail by produc-
ing the unknown word token (<unk>), and the BPE-model
is able to translate only a more common part of German
compounds (e.g. ‘tiere’ → ‘animals’). The character-based
models invent words (‘altients’, ‘jes lag’) that are similar to
strings that they saw during training and the source. In a
few cases they fallback to a language-modeling regime hav-
ing attended to the first characters of a corresponding source
word: e.g., instead of translating ‘reisen’ to ‘journeys’, the
ACT-ENC model translates it to ‘rows’ (confusing ‘reisen’
to a similarly spelled German ‘reihen’), or ‘layering’ instead
of ‘shift work’ (confusing ‘schichten’ to the prefix-sharing
‘schichtarbeit’). This is confirmed when inspecting attention
scores: The model frequently attends to the correct source
word, but mainly to the first characters only. Note that
ACT-ENC segmentations are context-dependent, e.g. occur-
rences of ’tiere’ are segmented differently.

Table 5 lists the most frequent segments produced by
1-layer ACT-ENC. For IWSLT, we observe that many seg-
ments make sense statistically (frequent or rare patterns) and
linguistically to some extent: Many of the frequent seg-
ments include whitespace (itself a frequent symbol); 2-gram
segments amongst others include frequent word suffixes
(‘en’, ‘in’, ‘er’), but also frequent diphthongs (‘ei’ and ‘ie’);
3-grams start with rare characters like ‘x’ and ‘y’ or single
dashes; 4-grams combine single characters with whitespaces
and double dashes; 5-grams cover numbers, in particular,
years. Importantly, though, since the best test BLEU scores
for IWSLT were obtained by a multi-layer character-based
model, the ACT-ENC model has done a reasonable job in im-
proving over the already well-performant strategy, one char-
acter per segment, despite having only a single NMT layer.
For CASIA and ASPEC, ACT-ENC converged to a segmen-
tation even closer to pure characters: for CASIA, the most
frequent 2-grams are punctuation combined with frequent
pronoun他 or preposition的, or with the hieroglyph明 from
a common phrase ‘[smth.] shows, [that]’ (all 4-10k in train),
and parts of rare English words; for ASPEC, it is mostly the
Hiragana letter き that starts the segments. While this let-
ter also occurs as singleton (183× in the dev set, vs. 52× as
part of a learned segment), and is frequent in the training set
(239k), it is not the most frequent letter. For WMT, charac-
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Ref in social groups of animals , the juveniles always look different than the adults .

Word in groups of social animals , the children are always different from the other than the <unk>.

BPE in gruppen sozialer tiere sehen die jung@@ tiere immer anders aus als die alt@@ tiere .
in groups , in groups , the juveniles are seeing the same animals as well as the animals .

ACT-ENC in| g|ru|pp|en| s|oz|ia|le|r |ti|er|e |se|he|n |d|ie| j|un|gt|ie|re| i|m|m|er| a|nd|er|s |au|s |al|s |d|ie| a|lt|ti|er|e |.|
in groups , the juvenile seems to see the different approach than the algaes .

Char in groups of social animals , the juveniles are still in the alite of the altients .

Ref we &apos;re living in a culture of jet lag , global travel , 24-hour business , shift work .

Word we live in a civilization with <unk> , global travel , <unk> and <unk> .

BPE wir leben in einer zivilisation mit jet@@ -@@ lag , weltweiten reisen , non@@ sto@@ p-@@ business und sch@@ icht@@ arbeit .
we live in a civilization with a single , a variety of global travel , presidential labor and checking .

ACT-ENC w|ir| l|eb|en| i|n |ei|ne|r |z|iv|il|is|at|io|n |m|it| j|et|-la|g |,| w|el|tw|ei|te|n |re|is|en| ,| n|on|st|op|-bu|si|ne|ss| u|nd| s|ch|ic|ht|ar|be|it| .|
we live in a civilization with jes lag , worldwide rows , nonstop business and failing .

Char we live in a civilization with jet walk , global journeys , nonstop-business and layering

Table 4: Greedy translations from the IWSLT dev set. Explicit segmentations are given for the ACT-ENC and BPE models.

Data Len Segments

IWSLT

2 en; n ; er; d; ie; e ; ei; in; s; w . . .
3 yst; - d; xtr; - u; 100; xpe; - w; xis; - e; -ge . . .
4 – d; – w; – s; – i; – e; – u; – g; – m; – a; – k . . .
5 1965 ; 969 ,; 1987 ; 1938 ; 1621 ; 1994 ; 1985 . . .

CASIA 2 ”。; ”，; er; ”他; --; ”的; le;明，; li; ut; . . .

ASPEC 2 きる;きた;きな;きに;りん;きは;き，;きて . . .

WMT
2 e ; s ; d; t ; l; es; on; a; de; en . . .
3 übe; Rüc; rüb; öve; ürs; Köp; üsl
4 ümov; ölln; rüng; Jürg; ülle; Müsl Müni; üric; üdig; . . .

Table 5: Most frequent ACT-ENC segments.

ter 2-grams are all very frequent in the training data (8-11M
occurrences) while longer segments are very rare (max. 1k
occurrences). Longer segments all include umlauts (ü, ö),
which are atypical for French and should be treated as one
unit semantically since they are loan words or proper names.

Gating Behavior of Char-GRUs. To investigate the
reasons for success of the deep character-based encoders
and their better or on-par performance with the segment-
ing ACT-ENC model, we analyzed average activations of
GRU gates. A GRU cell computes the next state as: st =
z⊙ tanh(xtWh + (ht−1 ⊙ r)Wg)+(1−z)⊙st−1, where z
is the update gate and r the reset gate, both being outputs of
sigmoid layers receiving xt and ht−1 [26]. Taking a closer
look at the average values of these gates, we find patterns of
segmentation as depicted in Figure 2 for a 5-layer character
model. Most of the time, a whitespace character triggers a
visible change of gate behavior: Forward reset gates close
(reset) one character after a whitespace and backward reset
gates close at whitespaces and then both open at the sub-
sequent character. The update gates show similar regular-
ities, but here the average gate values are less extreme. For
longer words all gate activations progressively decay with the
length. In addition, the block-wise processing of the com-
pound ‘schreibtisch’ (German: ‘writing table’) that was cor-
rectly split into ‘schreib’ and ‘tisch’, points to decompound-
ing abilities that pure character-level models possesses be-
yond simple whitespace tokenization.

Overall, this illustrates that the recurrent gates equip pure

Figure 2: Mean activations for reset and update forward
(FW) and backward (BW) GRU gates for an IWSLT sentence
as produced by the 5-layer char model. Layers are stacked
from bottom to top. Blue: values ≃ 0, yellow: values ≃ 1.

character models with the capacity to implicitly model input
segmentations, which would explain why ACT-ENC could
not find a radically different or advantageous segmentation.

5. Summary & Conclusion
We proposed an approach to learning (dynamic and adaptive)
input segmentation for NMT based on the Adaptive Compu-
tation Time paradigm [9]. Experiments on four translations
tasks showed that our model prefers to operate closely to the
character level. This is echoed by the quantitative success of
pure character-level models (without dynamic segmentation)
and a qualitative analysis of gating mechanisms, suggesting
that our adaptive model rediscovers the segmenting capacity
already present in gated recurrent, pure character-based mod-
els. Given this and the absence of many development hurdles
with character-based models, their lower memory consump-
tion and higher robustness, the presented dynamic segmenta-
tion capacity, being primarily a diagnostic research tool, does
not seem to be necessary to be modelled explicitly. We hope
these insights can serve as justification for intensification of
research in pure character-level NMT models.
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Abstract
Data selection techniques applied to neural machine trans-

lation (NMT) aim to increase the performance of a model by
retrieving a subset of sentences for use as training data.

One of the possible data selection techniques are trans-
ductive learning methods, which select the data based on the
test set, i.e. the document to be translated. A limitation of
these methods to date is that using the source-side test set
does not by itself guarantee that sentences are selected with
correct translations, or translations that are suitable given the
test-set domain. Some corpora, such as subtitle corpora, may
contain parallel sentences with inaccurate translations caused
by localization or length restrictions.

In order to try to fix this problem, in this paper we pro-
pose to use an approximated target-side in addition to the
source-side when selecting suitable sentence-pairs for train-
ing a model. This approximated target-side is built by pre-
translating the source-side.

In this work, we explore the performance of this general
idea for one specific data selection approach called Feature
Decay Algorithms (FDA).

We train German-English NMT models on data selected
by using the test set (source), the approximated target side,
and a mixture of both. Our findings reveal that models built
using a combination of outputs of FDA (using the test set
and an approximated target side) perform better than those
solely using the test set. We obtain a statistically significant
improvement of more than 1.5 BLEU points over a model
trained with all data, and more than 0.5 BLEU points over a
strong FDA baseline that uses source-side information only.

1. Introduction
Supervised machine learning aims to learn predictive models
from a set of labeled examples (training data) so that it can
accurately predict the labels of new, unlabeled, examples.
Having more data may seem at first glance to be beneficial
to building more accurate models, but upon closer inspec-
tion this is not necessarily always the case. Machine learning
models by design have an inductive bias that forces them to
generalize over the training examples rather than just mem-
orizing them without generalization. This means, however,
that if the size of the training set is increased, this may lead
to optimizing the model for predicting the labels of more ex-
amples, but which on average are less relevant at test time

than would be the case for a more focused, smaller train-
ing set. The intuition of the importance of using a highly
relevant set of training examples is captured well by the K-
nearest neighbour model, which essentially computes at test
time on-the-fly a very localized density estimate for every
test example, based on the K training examples closest to the
test example. It then uses this density estimate for classifi-
cation. For the K-nearest neighbour model, increasing K too
much is at the expense of basing predictions on an increas-
ing number of less relevant examples. Furthermore similar
to the K-nearest neighbour model, other predictive models
which typically discard the original training examples and
keep only a learned generalization over these examples, can
suffer if the training data becomes bigger but on average less
relevant to the test set.

In Machine Translation (MT), the data used to build the
models are parallel sentences (pairs of sentences in two lan-
guages, which are translations of each other) and we en-
counter the same problem when the amounts of data become
excessively large. Too much training data may cause the
model to be too generic, and not perform well if testsrc (the
document to be translated, i.e. the test set), belongs to a spe-
cific domain.

Data selection techniques aim to solve that problem by
selecting a subset of training data. Models that are trained
on a small set of parallel sentences can perform better than
those trained on all training data [1; 2].

Within the data selection field we can find several ap-
proaches to reduce the data: select sentences of good transla-
tion quality (data quality), select sentences relevant for a par-
ticular domain (domain adaptation), or select sentences that
are relevant for testsrc (transductive learning). We focus on
this last type, and so in this paper we propose new methods
to build Neural Machine Translation (NMT) models that are
tailored towards a testsrc.

Transductive learning [3] aims to find the best training
instances given an unlabeled example. In MT this means
finding the best parallel sentences given a document testsrc
to be translated. In our work, the transductive data-selection
method that we explore is Feature Decay Algorithms (FDA)
[4; 5; 6]. Standard FDA uses the n-grams of testsrc to re-
trieve training sentence pairs with source-side most similar
to testsrc. FDA has demonstrated good performance in Sta-
tistical Machine Translation (SMT) and NMT [2].

In most cases, FDA is used as a single step in the pipeline
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of building a model, using testsrc to extract a subset of par-
allel sentences. In this paper, we propose a different con-
figuration of use of FDA for building NMT models (see left
side of Figure 1). In particular, we propose executing FDA
not only using the testsrc (source-side language), as is com-
mon, but additionally on a pre-translated test set (approxi-
mated target-side). In order to avoid confusion, in this work
we use testsrc to indicate the test set (in the source-side lan-
guage) and testtrg to indicate the pre-translation of the test
set (in the target-side language). The outputs of these two
executions can be combined into one training set to build a
model that produces better translations than models built us-
ing FDA having only testsrc as input.

Considering both the source side and target side of the
parallel sentences as selection criteria is especially useful
when using a corpus that includes sentences from subtitles
in different languages. There are particular problems con-
cerning parallel sentences comprising subtitles. For exam-
ple, both sentences in the source and target side are limited
to be displayed in the same time window (assuming they are
synchronized). As the length of the same sentences in differ-
ent languages can be different, this may causes the longest
one to be rephrased, split in two, or have words omitted so it
meets the time requirement.

In our work we use an approximated, synthetic target-
side using a technique we call pre-translation. One way to
look at this is as a form of synthetic-data generation. As
such it is somewhat reminiscent of synthetic source-data gen-
eration using a target-to-source translation model, a tech-
nique known as back-translation introduced by Sennrich et
al.(2016) [7].

2. Related Work
Data selection techniques aim to select a subset of data such
that the models trained on that subset perform better. There
are multiple approaches to achieve those improvements, such
as domain adaptation or noise reduction approaches [8].

Methods based on domain adaptation include the work of
Moore and Lewis (2010) [9], who propose to use language
models (LM) to select data. An LM is a distribution over
sequences of words in a monolingual text, and is often used
by SMT systems to model the fluency of the outputs. Given
a string s and a language model LMd, Hd(s) is the entropy
of the distribution of s according to LMd.

Moore and Lewis build an in-domain language model
LMI and an out-of-domain language model LMO, and de-
termine how likely each sentence s is to be in-domain by
computing the entropy difference [HI(s) − HO(s)]. Axel-
rod et al. (2011) [10] extend the method by using LMs in
both the source-side and target-side languages, defining the
bilingual cross-entropy difference.

Another method, proposed by van der Wees et al. (2017)
[1], is to gradually remove out-of-domain sentences each η
epochs when training the NMT model.

In our work, we select data that is similar to testsrc (and

so, more relevant for use as training data). Previous research
on selecting data considering the test set includes the work of
Li et. al. (2018) [11] where they fine-tune a pre-built NMT
model using training data selected based on testsrc. They
use similarity measures, such as Levenshtein distance [12] or
the cosine similarity of the average of the word embeddings,
[13].

The method that we use to select data is FDA [4; 5; 6],
which has already proven to be useful in SMT [14; 15; 16]
and NMT [2]. Selecting a small subset of sentences from a
parallel corpus using FDA is enough to train SMT systems
that perform better than systems trained using the whole par-
allel corpus.

FDA takes as input a set of parallel sentences U and a
seed (generally the testsrc). Given U and the seed, FDA
retrieves an ordered sequence of sentences L from U . Sen-
tences are ordered based on the amount of n-grams they share
with the seed, with more shared n-grams meaning higher
preference, while also considering the variability of the n-
grams in the selected sentences.

The algorithm initializes L as a void sequence and itera-
tively selects one sentence s ∈ U − L and appends it to L.
The sentence s to select at each step is the one most relevant
to testsrc, based on the number of n-grams that s shares with
the testsrc. The score of the relevance is computed as in (1):

score(s) =

∑
f∈Fs

0.5CL(f)

# words in s
(1)

where Fs is the set of n-grams present in s and testsrc (by
default the order of the n-grams ranges from 1 to 3). CL(f)
is the count of the n-gram f in the sequence L of selected
sentences. Including CL(f) in the computation of the score
causes the algorithm to penalize n-grams that have been se-
lected several times, and hence favouring the selection of
sentences that contain new n-grams.

3. Using an Approximated Test Target-side
FDA uses testsrc as seed to retrieve a subset from a set of
parallel sentences. In order to retrieve the sentences it scores
the n-grams of testsrc (source-side language). We show the
pipeline of usage of FDA on the left side of Figure 1. Here,
the files testsrc and parallel text are used as input, and FDA
retrieves a subset of the sentences to be used for building a
model that is adapted to testsrc.

We propose to use both the test source-side testsrc and
the approximated test target-side testtrg as features in FDA,
when selecting the set of sentences from the parallel text.

We show the pipeline of our approach on the right side of
Figure 1. First, testsrc is translated (translate step). Then,
using FDA, we select a subset of parallel sentences given: (a)
testsrc as seed (FDAsrc), and (b) testtrg as seed (FDAtrg).
These two sets can be combined into one set which serves as
training data to build an MT model.

In the following subsections we explain in more detail
two issues that are yet unanswered in the pipeline : (1) how
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Figure 1: Pipeline of the traditional usage of FDA (left) and pipeline of our proposal, using the target-side (right).

to build testtrg (addressed in Section 3.1), and (2) how to
combine the outputs of FDA (addressed in Section 3.2).

3.1. Pre-Translation of testsrc

The first step in our approach consists of building testtrg
(translate step on the right side of Figure 1) so it can be used
as the seed to extract parallel sentences using the target side.
In order to perform this pre-translation we need to build a
model, which we refer to as the initial model.

There are several approaches to build the initial model,
such as using SMT or NMT. These models can be trained us-
ing the full training data or subsets (such as randomly sam-
pled, selected according to a particular domain, etc.). In this
work we use an NMT model built with the full training data.

3.2. Combining FDA outputs

In order to combine the sentences of FDAsrc and FDAtrg

into one training set of N sentences, various strategies are
possible such as retrieving the intersection or the union of
sentences. In this work we explore the strategy of concate-
nating both outputs (allowing the repetition of sentences) and
propose as future work alternative methods for merging both
parallel datasets.

The outputs of FDAsrc and FDAtrg can be seen as an
ordered sequence of sentences as in equation (2) and equa-
tion (3):

FDAsrc = (s
(src)
1 , s

(src)
2 , s

(src)
3 , ...s

(src)
N ) (2)

FDAtrg = (s
(trg)
1 , s

(trg)
2 , s

(trg)
3 , ...s

(trg)
N ) (3)

In order to obtain a training set that combines the outputs
of FDAsrc and FDAtrg , we concatenate the top sentences
of each subset to obtain a new list of sentences of size N , as
in equation (4)

FDA = (s
(src)
1 , ...s

(src)
N∗α , s

(trg)
1 , ...s

(trg)
N∗(1−α)) (4)

where 0 ≤ α ≤ 1 indicates the proportion of sentences that
are selected from FDAsrc and FDAtrg .

Note that some of the sentences may be replicated; it
may happen that s(src)i = s

(trg)
j , i.e. those that have been

retrieved by both executions FDA. In this work we decided
to keep the duplicates as it may be beneficial to oversam-
ple those sentences in which there is an agreement of both
executions of FDA. However, we propose as future work to
investigate the effect of removing those duplicate sentences.

The core of our approach is combining the outputs of the
two executions of FDA (using the test and translated sets).
Given the concatenation method presented in this section, the
outputs can be classified as one of the three options:

• Source-side only: use only the output of FDAsrc for
building the model. It is the configuration where α = 1
in Equation (4), which is equivalent to the traditional
procedure of using FDA (left side of Figure 1, so we
use this approach as the baseline.

• Target-side only: use the output of FDAtrg for build-
ing the model, which is the configuration where α = 0
in Equation (4).
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• Source-and-target-side: combine FDAsrc and FDAtrg .
This is the configuration where different values of α in
equation (4) are set. In our work we explore the values
α = 0.25, α = 0.50 and α = 0.75.

4. Experiments
4.1. Experimental Settings

We experiment with models for German-to-English direc-
tion. The parallel data used for the experiments is the training
data provided in the WMT 2015 [17] (4.5M sentence pairs,
225M words). The dev set of the NMT models (both the ini-
tial model and those trained using the selected datasets) are
5K randomly sampled sentences from development sets from
previous years. All the models presented here are evaluated
using the same test set which comprises documents provided
in WMT 2015 translation task as testsrc.

In order to build the NMT models we use OpenNMT-py,
which is the Pytorch port of OpenNMT [18]. All the NMT
models we build use the same settings (we only change the
training data used to build them). The value parameters are
the default ones of OpenNMT-py (i.e. 2-layer LSTM with
500 hidden units, vocabulary size of 50000 words for each
language). All the models are executed for 13 Epochs.

In the experiments we build models with the data selected
by using FDAsrc and FDAtrg . We explore selecting differ-
ent sizes of selected data: 500K, 1M and 2M sentence pairs.

5. Results

baseline
BLEU 0.2474
TER 0.5525
METEOR 0.2798
CHRF3 48.9473

Table 1: Results of the model trained with all available train-
ing data; also the no-FDA baseline.

First, we show in Table 1 the quality of the pre-translated
testtrg . This has been produced by the initial model, an
NMT model trained with all training data. This result also
serves as a no-FDA baseline to asses the benefit of using FDA
in general with.

The evaluation metrics presented in Table 1 give an es-
timation of the similarity between the model output and a
human-translated reference. The evaluation metrics we use
are: BLEU [19], TER [20], METEOR [21] and CHRF [22].

The results of the models are shown in Table 2. The
columns show the different configurations used to build the
set of selected sentences (i.e. the value of α in equation (4)
used). This means that the column α = 0.75 shows the re-
sults of the model trained with the sentences from the top-
750K sentences of FDAsrc and the top-250K sentences of

FDAtrg .
First, one may wonder whether FDA data selection is at

all helpful? Comparing the scores in Table 2 to the baseline
system trained on all data in Table 1, we see that all FDA
systems outperform it, with the best one obtaining more than
1.5 BLEU points improvement (a relative improvement of
6%).

We have marked in bold the scores that outperform the
second baseline: FDA applied using testsrc only (i.e the con-
figuration using FDAsrc and α = 1), as proposed in [2], and
computed the statistical significance (marked with an aster-
isk) with multeval [23] for BLEU, TER and METEOR when
compared to the baseline at level p=0.01 using bootstrap re-
sampling [24].

5.1. Ratio of data obtained using source and target side

Intuitively, models built using the data selected based on testtrg
might perform worse than using testsrc only. testtrg may
contain errors produced by the machine-generated text, so an
algorithm that bases the decision on that text may not select
the best sentences. Indeed, this can be seen in the column
α = 0 of Table 2, where most of the scores are worse than
those in column α = 1.

On the other hand, using only testsrc as a selection cri-
terion also has its limitations. While it guarantees the se-
lected source sentences to be similar to testsrc, it does not
provide any information about the target side of the selected
sentences. Therefore, it may still select sentences with target-
side translations that are wrong or not suitable given the do-
main of the test-set, thereby hurting the final translation ac-
curacy.

Using training data containing parallel sentences that are
not an accurate translation of each other is a problem that can
be encountered when using parallel sentences obtained from
subtitles. Often, translation of subtitles needs to be adapted
to meet length requirements (due to the restriction of time it
is displayed on screen). We present some examples of sen-
tences that are not accurately translated in Table 3.

We find that selecting sentences based both on testsrc
and on testtrg works better than using one selection crite-
rion alone. Thus, using an approximated target side, even
if imperfect, can help. The best performance is obtained
using configurations that combine outputs of FDAsrc and
FDAtrg (α = 0.75, α = 0.50 and α = 0.25 columns).

The best results are obtained for α = 0.75 using 1 million
sentences for selection. This setting improves 1.53 BLEU
points over the no-FDA baseline (model trained with all data)
and 0.67 BLEU points over the baseline that uses only the
source side for selection in FDA.

In Table 3 we show examples of sentences that are exclu-
sive outputs of FDAsrc or FDAtrg . These examples give
an indication about how including the output of FDAtrg can
benefit (or hurt) the quality of the selected data.

In the first row we see that the sentence “nun gibt es kein
Zurück mehr .” has been selected by FDAsrc as it matches
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α = 1 α = 0.75 α = 0.50 α = 0.25 α = 0

50
0K

lin
es BLEU 0.2517 0.2542 0.2543 0.2534 0.2441

TER 0.5601 0.5521* 0.5563 0.5544 0.5628
METEOR 0.2886 0.2895 0.2882 0.2888 0.2789
CHRF3 49.8314 50.0915 49.8898 49.9074 48.7796

1M
lin

es

BLEU 0.256 0.2627* 0.2595 0.2600* 0.2496
TER 0.5497 0.5455* 0.5462 0.5493* 0.5534
METEOR 0.2886 0.2920* 0.2921* 0.2918* 0.2833
CHRF3 50.0932 50.6273 50.5226 50.5682 49.5192

2M
lin

es

BLEU 0.2585 0.2610 0.2580 0.2614 0.2547
TER 0.5454 0.5429 0.5465 0.5437 0.5496
METEOR 0.2894 0.2923* 0.2903 0.2927* 0.2852
CHRF3 50.095 50.5582 50.2431 50.5487 49.7838

Table 2: Results of the models using different sizes of FDAsrc and FDAtrg .

German English pos
FDAsrc

pos
FDAtrg

nun gibt es kein Zurück mehr . there is no going back now . 12 -
diese Zahl ist mehr als doppelt so viel , als vor 10
Jahren .

famous pieces from the 19th century include those
by Delacroix , Gauguin , Monet , Renoir and
Corot .

50 -

diese Aufzählung ließe sich beliebig fortführen . and I could continue . - 63
bitte beachten Sie , dass Sie sich registrieren
lassen müssen , um einen Zugang zu den detail-
lierten Außenhandelsdaten zu erhalten .

all data can be downloaded free of charge . - 92

Table 3: Examples of sentences retrieved by FDAsrc and FDAtrg
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“kein Zurück mehr” in the input. According to this sentence,
this n-gram should be translated as “no going back”. The
translation found for “kein Zurück mehr” in testtrg is “point
where there is no return” (which, in addition, is closer to the
reference “point of no return”) and hence FDAtrg will use
n-grams such as “point” or “no return” to retrieve sentences.

In the second row, we find an example of a sentence re-
trieved by FDAsrc whose translation is not accurate (this is
easily noticeable as the names “Delacroix, Gauguin, Monet,
Renoir and Corot” are not present in the English-side sen-
tence). Including this sentence in the training data causes the
quality to decrease and the models to perform worse. This
problem is not exclusive of FDAsrc, as in rows 3 and 4 we
see the same problem happening in the output of FDAtrg .

Combining the outputs of FDAsrc and FDAtrg causes
the training data to be reinforced with sentences with relevant
translations. Note that mixing the outputs of the two execu-
tions of FDA cause some sentence pairs to be replicated, as
there is an overlap of the outputs.

In Table 4 we indicate the amount of unique lines con-
tained in the training data of the models (those presented in
Table 2). In the table we observe that the number of unique
lines is high in all training sets. The proportion of unique
lines ranges from 82% to 94%, which shows how FDAsrc

and FDAtrg retrieve different sentences mostly.

α = 0.75 α = 0.50 α = 0.25
500K 471753 (94%) 460993 (92%) 471174 (94%)
1M 918506 (92%) 886685 (89%) 917087 (92%)
2M 1749015(87%) 1648727(82%) 1745142(87%)

Table 4: Number of unique sentences in the training data.

When performing a column-wise comparison in Table 4,
we see how the number of unique lines is larger when the
output of one of the FDA models dominates the training data
(α = 0.25 or α = 0.75 columns) compared to those sets
that contain the same amount of sentences extracted from
FDAsrc and FDAtrg (column α = 0.50).

We also see that the larger the amount of selected data,
the more overlap exists between the two outputs (the pro-
portional amount of unique lines is smaller). For example,
in column α = 0.50, when 500K lines are selected, there
are 92% non-repeated lines, and this decreases to 82% when
selecting 2M lines. The same can be observed in the other
columns. This indicates how the selected data using FDAsrc

and FDAtrg tend to be more similar the more sentences are
retrieved.

6. Conclusion and Future Work
In this work, we explored a different pipeline in which FDA
can be used. We discovered that using testtrg (which is
machine-generated) as the seed of FDA can improve the per-
formance.

In our experiments, we built models using training sets
containing replicated instances of sentence pairs (as the out-
put of the two runs of FDA, on the source-side and target-
side, may overlap). This opens the door to exploring data
selection algorithms allowing the repetition of selected in-
stances.

In the future, we want to consider other procedures for
combining the outputs of FDA, as we believe that other merg-
ing strategies may achieve better results. For example, con-
sidering both n-grams on the source and target side in com-
bination (rather than two separate executions of FDA) may
achieve better performance.

In addition, we want to explore the performance when
using a different initial model. Changing the initial model to
produce the testtrg causes FDAtrg to have a different per-
formance. We believe that using another dataset to build the
initial NMT model (or even using different paradigms such
as SMT or rule-based MT) or choosing an initial model that
is also closer to testsrc (e.g. using FDA to build the initial
model) should boost the performance. Moreover, the use of
several initial models allow us to perform concatenations of
several outputs of FDA using different seeds.

Finally, we want to explore how data selection algorithms
may improve when allowing the algorithm to select the same
sentence pairs several times.
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[6] E. Biçici and D. Yuret, “Optimizing instance selection
for statistical machine translation with feature decay al-
gorithms,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 23, no. 2, pp. 339–350,
2015.

[7] R. Sennrich, B. Haddow, and A. Birch, “Improving
neural machine translation models with monolingual
data,” in Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), Berlin, Germany, 2016, pp. 86–96.

[8] S. Eetemadi, W. Lewis, K. Toutanova, and H. Radha,
“Survey of data-selection methods in statistical ma-
chine translation,” Machine Translation, vol. 29, no. 3-
4, pp. 189–223, 2015.

[9] R. C. Moore and W. Lewis, “Intelligent selection of lan-
guage model training data,” in Proceedings of the ACL
2010 conference short papers, Uppsala, Sweden, 2010,
pp. 220–224.

[10] A. Axelrod, X. He, and J. Gao, “Domain adaptation
via pseudo in-domain data selection,” in Proceedings of
the 2011 Conference on Empirical Methods in Natural
Language Processing, Edinburgh, Scotland, UK., 2011,
pp. 355–362.

[11] X. Li, J. Zhang, and C. Zong, “One Sentence One
Model for Neural Machine Translation,” in Proceed-
ings of the Eleventh International Conference on
Language Resources and Evaluation (LREC 2018),
Miyazaki, Japan, 2018, pp. 910–917.

[12] V. Levenshtein, “Binary codes capable of correcting
deletions, insertions and reversals,” in Soviet Physics
Doklady, vol. 10, no. 8, 1966, pp. 707–710.

[13] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
and J. Dean, “Distributed representations of words
and phrases and their compositionality,” in Advances
in neural information processing systems, 2013, pp.
3111–3119.
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Abstract
Paraphrasing has been proven to improve translation

quality in machine translation (MT) and has been widely
studied alongside with the development of statistical MT
(SMT). In this paper, we investigate and utilize neural para-
phrasing to improve translation quality in neural MT (NMT),
which has not yet been much explored. Our first contribution
is to propose a new way of creating a multi-paraphrase cor-
pus through visual description. After that, we also proposed
to construct neural paraphrase models which initiate expert
models and utilize them to leverage NMT. Here, we diffuse
the image information by using image-based paraphrasing
without using the image itself. Our proposed image-based
multi-paraphrase augmentation strategies showed improve-
ment against a vanilla NMT baseline.

1. Introduction
In general, sentence paraphrasing is a way to restate a con-
cept with different vocabulary, style, and level of detail.
As defined by De Beaugrande and Dressler, a paraphrase
is an approximate conceptual equivalence among outwardly
different material [1]. In many language generation tasks,
paraphrasing plays a critical role for enrichment and adding
flexibility. In the MT system, paraphrases are often used
for multi-reference evaluation [1], pre-editing of source sen-
tences [2, 3, 4] and automatic post-editing [5, 6, 7].

Moreover, since the development of SMT, there have
been a lot of approaches for using paraphrasing to elaborate
the source language data. Such method have been concluded
as a convenient way to handle out-of-vocabulary (OOV) and
rare words problem [8]. A study by Madnani and Dorr also
showed that by using targeted paraphrases, unfair penaliza-
tion of translation hypotheses could be avoided [9]. Para-
phrasing could also be used to augment the dataset size,
which correlates positively with translation result in SMT
[4, 10].

However, despite a wide range of existing works of para-
phrasing, MT studies usually use a strict definition of para-
phrase which accepts only word substitution and reorder-
ing. The reason is that we cannot grasp a tangible concept
about the idea of the sentence being translated. On the other
hand, Hirst argues that paraphrases don’t necessarily need to
be fully synonymous. It is sufficient for them to be quasi-

synonymous, as a mutually replaceable form of truth appli-
cable in some contexts [11]. By taking further this idea, as
long as the semantics of the mutual paraphrase sentence can
be determined, we actually can widen the paraphrase defini-
tion to some extent.

In this research, we treat an image as a symbolic form of
sentence idea, regarded as the basis of paraphrasing. We con-
sider two sentences as paraphrase as long as both of them are
talking about the same image. This means that the word or
phrase insertion and deletion based on the same picture as a
concept may now be accepted as one of the paraphrase vari-
ations. Slightly different from the usual use case, this defini-
tion can be called image-based paraphrasing. Furthermore,
as paraphrasing to enable multi-source information in NMT
is not much investigated yet, in this study we explore the use
of image-based paraphrasing to leverage NMT quality.

Recently, the Second Conference on Machine Transla-
tion (WMT17) accelerated a “Multimodal Machine Transla-
tion” shared task that aimed to translate the image descrip-
tions into the target language. Most approaches focus on uti-
lizing image features in addition to the information from a
single caption of the source language. However, the results
from most submitted systems reveal that the additional im-
age features could only slightly contribute to system perfor-
mance. As pointed out by Calixto et al. [12] the image-text
latent representation combination approach has not yielded
significant improvement on WMT 2017 Multimodal shared
task dataset testing. Here, we attempt to go in another di-
rection in which we diffuse the image information by us-
ing image-based paraphrasing without using the image itself.
The resulting paraphrase captions are then utilized within a
multi-source and multi-expert NMT model.

In summary, the contributions of this work include:

1. Introduce a new way of creating a multi-paraphrase
corpus through image captions so-called image-based
paraphrasing.

2. Generate multi-paraphrase sentences of the WMT17
Multimodal Translation Task dataset through crowd-
sourcing, which can be used by the community1

3. Develop automatic paraphrase generation in a semi-
supervised manner;

1The data will be soon available publicly.
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4. Utilize multi-expert translation in neural machine
translation using our proposed paraphrase; and

5. Improve the baseline used at WMT17 with a 13.2
BLEU score margin, which is close to the top score
that used a multimodal model.

2. Multi-paraphrase Generation
2.1. Defining Paraphrase Elementary Operation

To train an NMT model with our image-based multi-
paraphrases, firstly we need to build a set of paraphrased
source sentences with images as the basis of paraphrasing.
However, the process of manually collecting paraphrases is
expensive and time-consuming. On the other hand, Resnik et
al. (2013) proposed that corpus creation with a crowdsourc-
ing platform provides such advantages as low cost, effective-
ness, and reasonable quality [13].

Figure 1: Reference image for captioning and paraphrasing
shown in Table 1.

Furthermore, the requirement to have an image and sev-
eral captions, are similar with an image captioning dataset
such as Microsoft Common Object in Context (MSCOCO)
dataset [14]. The caption of this dataset can be regarded as
paraphrase, such as done by Prakash et al. for their neural
paraphrase generation study [15]. They stated that the an-
notators described the most obvious things in an image and
concluded that several captions of an image can be counted
as paraphrases. While this may be true, we cannot define
what kind of operation has been done from the original sen-
tence to the paraphrase. Consequently, the arbitrary nature
of the corpus distribution might cause the paraphrases to be-
come noise to each other.

To prevent this, a set of paraphrase operation which
covers all possible paraphrase variations needs to be de-
fined. Bhagat and Hovy categorized the variations of how
humans paraphrase [16] and argued that “although the logi-
cal definition of paraphrases requires strict semantic equiv-
alence, linguistics accept a broader, approximate, equiva-
lence.” Based on this idea, they analyzed paraphrase charac-
teristics in various studies and in corpora and established 25
quasi-paraphrase classes, such as change in tenses, metaphor
substitution, and, function-word variations.

Given some quasi-paraphrases have very small frequency
in the MTC and MSRP corpora as reported by them, we
grouped these into 4 elementary paraphrase operations: dele-
tion, insertion, reordering, and substitution. Then, we con-
structed a paraphrase corpus based on these four operations.
The paraphrase collection was done through a crowdsourc-
ing platform on the partial WMT17 Multimodal Translation
Task dataset [17]. After that, we constructed our automatic
neural paraphrase model based on partial data to generate the
paraphrase sentences of the full WMT17 dataset. The details
are described below.

2.2. Crowdsourcing Paraphrases on Partial WMT17
Dataset

The WMT17 Multimodal Translation Task dataset [17] con-
tains a set of images with triplets of captions in English,
German, and French. The dataset was created from the
Flickr30K Entities dataset of image captions in English [18]
that was extended to also contain manually translated Ger-
man and French captions. The data consists of 29000, 1014,
and 1000 triplets respectively for the training, development
and testing. An out-of-domain dataset consisting 461 images
taken from the MSCOCO dataset [14] was also introduced,
which contains ambiguous verbs [19].

We focused on paraphrasing the English sentences which
are considered as source language. Table 1 shows an exam-
ple of a paraphrased image caption based on four elementary
operations (deletion, insertion, reordering, and substitution)
and Figure 1 shows the reference image. As paraphrasing
the whole 29k triplet training dataset (29k training dataset)
using crowdsourcing would not be efficient in terms of cost
and time, we crowdsourced only 10k triplets of this dataset
(10k training dataset), along with the whole development and
testing datasets.

We used Crowdflower2 (now Figure Eight) as the crowd-
sourcing platform. Each crowdworker was instructed to para-
phrase at least two image captions for one session. We
limited the task to English speakers, or at least those who
spoke English as their second language, to maintain qual-
ity. We discarded sentences that were not valid such as
randomly inputted character, empty string, or captions that
aren’t English. The crowdsourcing process took about 3
months and 201 workers participated from 16 countries such
as the United States, Philippines, and Malaysia. Each work-
ers created 50.1 quintuplets of paraphrases on average.

2.3. Semi-supervised Paraphrase Generation on Full
WMT17 Dataset

Furthermore, to complete the paraphrasing on the full
WMT17 dataset, we then used 10k quintuplets of crowd-
sourced paraphrases and constructed neural paraphrase
model using four encoder-decoder long short-term memory
(LSTM) models with attention [20] for each paraphrase oper-

2http://www.figure-eight.com
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Table 1: Image caption and example paraphrases
Operation Sentence

Image Caption A little gray dog jumps over a small hurdle.

Paraphrase

Deletion A little gray dog jumps over a hurdle.
Insertion A little gray dog jumps over a small hurdle successfully.
Substitution A little gray dog pass over a small hurdle.
Reordering Over a small hurdle, a little gray dog jumps.

ation. We tuned and tested our automatic neural paraphrase
model using these crowdsourced paraphrases of the devel-
opment and testing datasets, respectively. With these four
paraphrasing models, we generated multi-paraphrases on the
remaining 19k image captions.

The generated 19k dataset was combined with the orig-
inal crowdsourced 10k training dataset. Finally, these 29k
paraphrased dataset are combined with original dataset re-
sulting 58k-triplet training dataset for each operation. In con-
clusion, the 29k paraphrased training dataset is working as
the regularizer for the original dataset. These are the final
data that will be used to train a mixture-of-experts transla-
tion model, which is described in the next section. The data
will be publicly available to augment the WMT17 dataset.

Based on our empirical observation, using paraphrased
data on development and testing dataset will reduce the per-
formance of the overall system. When using paraphrased
data on development, the training objective becomes unclear,
and the loss returned will not represent the real loss. Given
that, we emphasize that the use of paraphrased dataset in
translation step was done on training step, in combination
with original dataset. In this stage, the paraphrases were act-
ing as regularizer and the means of ensembling, improving
robustness of the ensembled model as a whole.

3. Neural Caption Translation
This section describes several approaches on using our pro-
posed multi-paraphrase operations to improve NMT. The
score of these approaches will then be compared with WMT
baseline and our encoder-decoder LSTM NMT baseline.

3.1. Combining All Data in a Single Model

This method was done by just using the paraphrase as a
means for data augmentation in source side, such as reported
by Nichols et al. (2010) to leverage SMT system [10]. All
paraphrases and its original sentence were combined, and
the target sentence was duplicated to the number of multiple
paraphrases. This approach was done to measure the baseline
performance with augmented data.

3.2. Multi-source Model

We implemented Zoph and Knight (2016) multi-source NMT
to incorporate various paraphrase inputs with one output
[21]. For this model, the encoded representation and atten-
tion were combined by concatenation. They reported that

this model has the advantage of information triangulation to
reduce ambiguity. In their paper, they used several transla-
tion pairs such as {French, German} to English in which this
triplet of language has similar language structure. However,
given this advantages, the use of this model to monolingual
input has never been investigated.

3.3. Uniform-weighted Ensemble Model

For this uniform weighted ensemble model, we trained NMT
models which source sentence has been paraphrased based
on each elementary operations and another one that uses
original source sentence, resulting five expert NMT mod-
els. After that, these five models are ensembled by averag-
ing each output layer probability distribution, so that every
model was weighted uniformly. This model is used to com-
pare the performance with mixture-of-experts model listed in
the next subsection, where each expert model have different
weight.

The training of this translation model consists of two
steps. The first step is to train five translation models based
on each paraphrase as the source sentence using the 56k
dataset (the combination of original and paraphrased source
sentences). Five of those models are trained against the same
target sentence. Each model is then regarded as an expert
model. Each of the expert models operates on subword level,
tokenized by Sentence Piece with 3000 vocabulary unit3.

3.4. Mixture-of-experts Model

Next, we adopted the mixture-of-experts model proposed by
Garmash and Monz (2016). Here, instead of linear layer pro-
posed in their study [22], the expert model is implemented
into a single LSTM layer hid that receives the concatenated
decoder hidden state output hn.

ct = tanh(LSTMhid([h0, h1, ..., hn]))
g0:i = softmax(WgateD(ct) + bgate).

A softmax function is then applied to obtain the weights
of each expert model’s output layer on. Assuming Wn is the
weight of the output layer from expert n. Then, the aggre-
gated weight Wagg is a linear combination function of each
of those weights:

Wagg = g0W0 + g1W1 + ...+ gnWn.

3https://github.com/google/sentencepiece
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Table 2: Paraphrasing model result in BLEU and METEOR
Operation BLEU METEOR
Deletion 53.0 42.2
Insertion 56.1 40.5
Reordering 47.2 42.0
Substitution 59.6 44.8

For this model, a 50% dropout D will be applied on the
hidden representation after tanh nonlinearity was applied.
The regularized representation was further transformed by
the gate layer which has the same output size with the num-
ber of expert.

A diagram of mixture-of-experts neural caption transla-
tion model using our proposed approach is shown in Fig. 2.
First, the source sentence is paraphrased into four different
paraphrases used to train each of the expert model. Then,
each expert will pass their abstract decoding state into mix-
ture model which will produce weights as many as the num-
ber of expert. The resulting weight distribution is the lin-
ear combination function between each expert’s output prob-
ability distribution and gating weight produced by mixture
model.

4. Experiments
The purpose of this experiment is to choose the best type of
model suitable for our multi-paraphrase, by comparing score
between Bahdanau et al. NMT baseline and several popular
multi-source NMT.

4.1. Setup

We followed the training, development, and test set-up of
WMT17 shared task. All result were scored using multe-
val [23] with lowercased and tokenized sentences. We used
BLEU [24] and METEOR [25] as evaluation metrics.

The multi-source NMT has five single-depth encoders
with 512 hidden size trained with Adam [26]. The mixture-
of-experts model was trained using RMSprop optimizer with
0.0001 learning rate [27]. In every increase of development
loss, the learning rate is decayed by half into maximum 5
decays. The results are decoded with beam size of 5.

4.2. Evaluation of Neural Paraphrase Model

We constructed four encoder-decoder LSTM models with at-
tention [20] for each elementary paraphrase operation. Each
model has a bidirectional encoder and attentional decoder
with one layer, 50% dropout ratio, and 512 hidden layer size.
Implementation was done using Chainer framework version
3.0 [28] and ran on GTX Titan X GPU. We used Adam [26]
as the optimizer with decaying alpha into half in every devel-
opment loss increase with maximum of 7 decays for training
early stopping. After stopping the training, model with the
lowest development was selected and used for decoding.

Table 2 lists the scores of the paraphrases produced with
our automatic paraphrasing model. The substitution opera-

tion produced the highest BLEU score while the reordering
operation producing the lowest BLEU score. This was ex-
pected because the reordering operation sometimes includes
the changing of the active/passive properties of a sentence.
Overall, we believe this score is high enough to paraphrase
the remaining 19k WMT dataset.

4.3. Translation Model Results

Table 3 shows the performance of our proposed neural cap-
tion translation. All results using our multi-paraphrase out-
performed the NMT baseline. There are no improvements
gained from combining all data, which is the simplest form of
data augmentation. This simple combination of data breaks
the relation existed between each paraphrases that mention
the same image. Furthermore, we cannot be sure that each
source sentence has the same amount of paraphrase. By
considering these factors, we utilized multi-source NMT and
multi-expert NMT, which yield better BLEU and METEOR
score.

This performance increase indicates that each expert
model is slightly different between each other, and worked
well in uniform-weighted ensemble and mixture-of-experts
scenario. This model also performed better than uniform-
weighted NMT in three cases. Moreover, the mixture-of-
experts model performed better in out-of-domain ambiguous
MSCOCO test dataset, implying that overfitting did not oc-
cur. This also proves the argument that adding additional
knowledge will improve model performance on disambiguat-
ing inputs. From applying to these several models, we can
conclude that our elementary operation paraphrase is suitable
to be used as a means for ensembling.

Table 4 shows the current submission systems in the of-
ficial WMT17 shared task which submissions consist of one
textual model [29] and several multimodal models. Our pro-
posed approach outperformed the baseline in WMT17 with a
13.2 BLEU score margin. Our proposed model, although it
is textual, could produce competitive result with other multi-
modal models. The mixture-of-experts model outperformed
several multimodal models such as other WMT submission
[30, 31, 32, 33]. Even in the out-of-domain dataset of COCO
2017, the mixture-of-experts model also performed reason-
ably high with a 28.0 BLEU score. Nevertheless, our score
was close to that best score. This proved that the paraphras-
ing of the source side also helped our model to work with
unseen data and prevent overfitting.

4.4. Discussion

To further analyze the contribution between the experts
trained on the original data and that trained on paraphrased
data, we compared the translation process step-by-step in
our proposed approach. This source sentence shown in Ta-
ble 5 was translated using each baseline model (an expert),
resulting five different translation hypotheses. Each expert
has been trained with slightly different paraphrased source
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Figure 2: Diagram of proposed mixture-of-experts neural caption translation model

Table 3: The performance of proposed neural caption translation in comparison with the baseline.

Textual Model Test 2016 Test 2017 Test COCO 2017
BLEU METEOR BLEU METEOR BLEU METEOR

Our NMT Baseline 37.7 55.6 30.1 49.7 25.0 44.6
Combine all data 36.7 53.9 29.6 47.7 25.1 43.7
Multi-source NMT 37.6 55.4 30.1 49.4 24.4 44.3
Uniform weighted ensemble 39.6 56.9 31.4 50.7 26.7 46.0
mixture-of-experts ensemble 40.5 57.6 32.5 51.3 28.0 46.8

Table 4: Existing submission systems in official WMT17 shared task.

Textual Model Test 2016 Test 2017 Test COCO 2017
BLEU METEOR BLEU METEOR BLEU METEOR

Official WMT Baseline 32.5 52.5 19.3 41.9 18.7 37.6
Zhang et al. (2017) - - 31.9 53.9 28.1 48.5

Multimodal Model Test 2016 Test 2017 Test COCO 2017
BLEU METEOR BLEU METEOR BLEU METEOR

Madhyastha et al. (2017) - - 25.0 44.5 21.4 40.7
Calixto et al. (2017) 41.3 59.2 29.8 50.5 26.4 45.8
Ma et al. (2017) - - 31.0 50.6 27.4 46.5
Helcl and Libovicky (2017) 36.8 53.1 31.1 51.0 26.6 46.0
Caglayan et al. (2017) 41.0 60.4 33.4 54.0 28.5 48.8

Table 5: Examples of resulting sentences in mixture-of-experts model.
Translation Model Type Sentences BLEU-1

(Data) Original two motorcycles drive on a road along the river .
Baseline Original zwei motorradfahrer fahren auf einer straße entlang . 0.75

Single Paraphrase Model

Deletion zwei motorräder fahren auf einer straße am fluss . 0.87
Insertion zwei motorradfahrer fahren auf einer straße am fluss . 0.84
Reordering zwei motorradfahrer fahren auf einer straße am fluss entlang . 0.95
Substitution zwei motorradfahrer fahren auf einer straße am flussufer . 0.82

Uniform Weight Ensemble zwei motorradfahrer fahren auf einer straße am fluss . 0.84
mixture-of-experts Ensemble zwei motorräder fahren auf einer straße am fluss entlang . 0.97
(Data) Target zwei motorräder fahren auf einer straße dem fluss entlang .

sentence. We calculated BLEU-1 scores for each hypothe-
sis against the target, resulting the source-reordered expert

model yielded the best result between all experts.
The aim of proposed mixture-of-experts model task is to
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make sure the best part of each model is kept, and leaving
out any noise or error that might occur in each model result.
As can be seen from the German result from the mixture-of-
experts model compared with the target sentence, the only
difference is the word “am” in which the correct one should
be “dem”.

In this example, in deletion translation result, the word
“motorräder” is decoded instead of “motorradfahrer”. An-
other example is the phrase “fluss entlang” which can only be
found in reordering translation result. This goodness on each
expert model however, should be kept by the mixture model
by distributing right word in every word being decoded. In
conclusion, the final result of the ensemble of expert model
combines every goodness in each expert model.

Quantitatively, the mixture-of-experts model success-
fully kept the good feature of best performing 0.87 and
0.95 BLEU-1 score yielded in source-deleted and source-
reordered model results respectively, resulting 0.97 BLEU-1
score. This is a significant improvement compared with the
BLEU-1 score of the uniform weighted model that was only
increased into 0.84.

5. Conclusions and Future Works
A single caption cannot represent all the information of the
image to which it refers to. In this study, we elaborated an
image by various paraphrase operations. This enables us to
incorporate additional knowledge from image to the transla-
tion process, without using the image itself, but diffused in a
form of paraphrase.

We successfully generated multi-paraphrase sentences of
the WMT17 Multimodal Translation Task dataset through
crowdsourcing which will be publicly available. We con-
structed an automatic paraphrase generation model, and used
it with the multi-expert approach within NMT.

The results indicate that our proposed paraphrase ele-
mentary operations are best to be used for ensembling, es-
pecially on multi-expert ensembling settings. The hypoth-
esis of regularizing models by paraphrasing on the source
sentence was proven to be effective. In the future, we will
further investigate various methods of incorporating visual
information into NMT models.
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Abstract
A spoken language translation (ST) system consists of at
least two modules: an automatic speech recognition (ASR)
system and a machine translation (MT) system. In most
cases, an MT is only trained and optimized using error-free
text data. If the ASR makes errors, the translation accuracy
will be greatly reduced. Existing studies have shown that
training MT systems with ASR parameters or word lattices
can improve the translation quality. However, such an ex-
tension requires a large change in standard MT systems, re-
sulting in a complicated model that is hard to train. In this
paper, a neural sequence-to-sequence ASR is used as fea-
ture processing that is trained to produce word posterior fea-
tures given spoken utterances. The resulting probabilistic
features are used to train a neural MT (NMT) with only a
slight modification. Experimental results reveal that the pro-
posed method improved up to 5.8 BLEU scores with synthe-
sized speech or 4.3 BLEU scores with the natural speech in
comparison with a conventional cascaded-based ST system
that translates from the 1-best ASR candidates.

1. Introduction
Spoken language translation is one innovative technology
that allows people to communicate by speaking in their na-
tive languages. However, translating a spoken language, in
other words, recognizing speech and then translating words
into another language, is incredibly complex. A standard ap-
proach in speech-to-text translation systems requires effort to
construct automatic speech recognition (ASR) and machine
translation (MT), both of which are trained and tuned inde-
pendently.

ASR systems, which aim for the perfect transcription of
utterances, are trained and tuned by minimizing the word
error rate (WER) [1]. MT outputs are optimized and auto-
matically measured based on a wide variety of metrics. One
of the standard methods is the BLEU metric. However, all
the errors from the words in ASR outputs are treated uni-
formly without considering their syntactic roles, which are
often critical for MT. Many studies have investigated the ef-
fectiveness of the WER metric of ASR on the whole speech
translation pipeline [2, 3, 4] and verified that ASR errors that
compose the WER metric do not contribute equally to the
BLEU score of translation quality.

Furthermore, most MT systems are only trained and op-
timized using error-free text data. Despite the fact that ASR
technologies and their recognition rates have continued to
improve, the occurrence of speech recognition errors remains
inevitable. This is because there are many ambiguities due to
a wide variety of acoustic and linguistic patterns produced
by different speakers with various speaking styles and back-
ground noises. If the ASR engine makes mistakes, the trans-
lation accuracy will be significantly reduced. Thus, ignor-
ing the existence of ASR errors while constructing a speech
translation system is practically impossible.

Previous research on traditional phrase-based MTs has
attempted to train the ASR and MT parameters of the log-
linear model to directly optimize the BLEU score of the
translation metric of full speech translation systems [3]. It al-
lows the model to directly select recognition candidates that
are easy to translate and improve the translation accuracy
given an imperfect speech recognition. Ohgushi et al. [5]
further elaborated various techniques in the context of the
joint optimization of ASR and MT, including minimum er-
ror rate training (MERT) [6], pair-wise ranking optimization
(PRO) [7], and the batch margin infused relaxed algorithm
(MIRA) [8]. Other studies directly performed translation on
the lattice representations of the ASR output [9, 10, 11]. The
results showed that a better translation can be achieved by
translating the lattices rather than with the standard cascade
system that translated the single best ASR output.

Recently, deep learning has shown great promise in many
tasks. A sequence-to-sequence attention-based neural net-
work is one type of architecture that offers a powerful model
for machine translation and speech recognition [12, 13]. Sev-
eral studies revisited similar problems and proposed handling
lattice inputs by replacing the encoder part with a lattice en-
coder to obtain a lattice-to-sequence model [14, 15]. With
these methods, robust translation to speech recognition errors
became possible. However, this approach requires a large
modification to standard NMT systems, resulting in a com-
plicated model that is hard to train. Also, as the NMT takes
word lattices as input, it might be difficult to backpropagate
a translation error to the ASR part.

An extreme case is to train the encoder-decoder architec-
ture for end-to-end speech translation (ST) tasks, which di-
rectly translates speech in one language into text in another.
Duong et al. [16] directly trained attentional models on par-
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allel speech data. But their work focused only on alignment
performance. The works by Berard et al. [17] might be the
first attempts that successfully build a full-fledged end-to-end
attentional-based speech-to-text translation system. But they
only performed with a small parallel French-English BTEC
corpus, and their best results were behind the cascade base-
line model. Later on, Weiss et al. [18] proposed a similar
approach and conducted experiments on the Spanish Fisher
and Callhome corpora of telephone conversations augmented
with English translations. However, most of these works
were only done for language pairs with similar syntax and
word order (SVO-SVO), such as Spanish-English or French-
English. For such languages, only local movements are suf-
ficient for translation. Kano et al. [19] showed that direct at-
tentional ST approach failed to handle English-Japanese lan-
guage pairs with SVO versus SOV word order.

In this research, we also focus on English-Japanese
and we aim for a neural speech translation that is robust
against speech recognition errors without requiring signifi-
cant changes in the NMT structure. This can be considered
as a simplified version of the one that directly performed
translation on the lattice representations. But, instead of pro-
viding full lattice outputs, we perform a neural sequence-to-
sequence ASR as feature processing that is trained to pro-
duce word posterior features given spoken utterances. This
might resemble the word confusion networks (WCNs) [20]
that can directly express the ambiguity of the word hypothe-
ses at each time point. The resulting probabilistic features are
used to train NMT with just a slight modification. Such vec-
tors are expected to express the ambiguity of speech recog-
nition output candidates better than the standard way using
the 1-best ASR outputs while also providing a simpler struc-
ture than the lattice outputs. During training, the approach
also allows backpropagating the errors from NMT to ASR
and performs join training. Here, we evaluate our proposed
English-Japanese speech translation model using both syn-
thesized and natural speech with various degrees of ASR er-
rors.

2. Overview of Attention-based Speech
Translation

Our English-Japanese end-to-end speech translation system
consists of ASR and MT modules that were constructed
on standard attention-based, encoder-decoder neural network
architecture [21, 22].

2.1. Basic Attentional Encoder-Decoder model

An attentional encoder-decoder model consists of an en-
coder, a decoder, and attention modules. Given input
sequence x = [x1, x2, ..., xN ] with length N , the en-
coder produces a sequence of vector representation henc =
(henc

1 , henc
2 , ..., henc

N ). Here, we used a bidirectional recur-
rent neural network with long short-term memory (bi-LSTM)
units [23], which consist of forward and backward LSTMs.

The forward LSTM reads the input sequence from x1 to xN

and estimates forward
−−→
henc, and the backward LSTM reads

the input sequence in reverse order from xN to x1 and es-
timates backward

←−−
henc. Thus, for each input xn, we obtain

henc
n by summation forward

−−→
henc and backward

←−−
henc:

henc
n =

−−→
henc
n +

←−−
henc
n . (1)

The decoder, on the other hand, predicts target sequence
y = [y0, y1, y2, ..., yM ] with length M by estimating con-
ditional probability p(y|x). Here, we use uni-directional
LSTM (forward only). Conditional probability p(y|x) is es-
timated based on the whole sequence of the previous output:

p(ym|y<m,x) = softmax(Wyh̃
dec
m ). (2)

Decoder hidden activation vector h̃dec
m is computed by apply-

ing linear layer Wc over context information cm and current
hidden state hdec

m :

h̃dec
m = tanh(Wc[cm;hdec

m ]). (3)

Here, cm is in the context information of the input se-
quence when generating current output at time m. It is es-
timated by the attention module over encoder hidden states
henc
n :

cm =
N∑

n=1

am(n) ∗ henc
n , (4)

where variable-length alignment vector am is computed
whose size equals length of input sequence x:

am = align(henc
n , hdec

m ) (5)
= softmax(dot(henc

n , hdec
m )).

This step assists the decoder to find relevant information on
the encoder side based on the current decoder hidden states.
Several variations calculate align(henc

n , hdec
m ). Here, we sim-

ply use the dot product between the encoder and decoder hid-
den states.

2.2. Automatic Speech Recognition

Speech recognition tasks estimate a word sequence given
a sequence of speech features. Input sequence x =
[x1, ..., xN ] is the input speech filter bank feature sequence
of the source language, and target sequence y = [y1, ..., yM ]
is the predicted corresponding word sequence in the source
language.

2.3. Machine Translation

Machine translation tasks estimate a word sequence of a tar-
get language given a word sequence of a source language.
Input sequence x = [x1, ..., xN ] is the word sequence of
the source language, and target sequence y = [y1, ..., yM ]
is the predicted corresponding word sequence in the target
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language. Here, xn is a one-hot vector in the baseline or
posterior vector in the proposed method, ym is the index rep-
resentation of the words, and y0 is an index representation of
the target sequence’s start.

2.4. Speech-to-text Translation

Speech-to-text translation tasks estimate a word sequence of
a target language given a sequence of speech features. Here,
we use both the sequence-to-sequence ASR and MT systems.
Output sequence y from ASR becomes input sequence x in
an MT system.

3. Proposed method: NMT using Spoken
Word Posterior Features

Figure 1: Construction of spoken word posterior features

Fig. 1 illustrates the construction of spoken word pos-
terior features. Here, we train an end-to-end ASR using the
standard attention-based encoder-decoder neural network ar-
chitecture described in the previous section. But instead of
providing 1-best outputs of the most probable word sequence
to the translation system,

ŷm = argmax
ym

p(ym|y<m,x), (6)

we utilize the posterior probability vectors before the
argmax function:

p(ym|y<m,x). (7)

This way the vectors can still express the ambiguity of the
speech recognition output candidates with probabilities.

The resulting probabilistic features are then used to train
the NMT with only a slight modification. We train the
end-to-end NMT using the standard attention-based encoder-
decoder neural network architecture described in the previ-
ous section. The only difference is in the input features. In-
stead of training the model with the one-hot vector of the
most probable words, we utilize the posterior vectors ob-
tained from the ASR. However, the dimension of input vector
representation used in a standard one-hot vector and the pro-
posed posterior vectors is the same. The overall architecture
is illustrated in Fig. 2.

Figure 2: Proposed NMT architecture

4. Experiments
We evaluated the performance of the proposed method on
an English-Japanese translation task. To simulate the effect
of various ASR errors, we first assessed it on synthesized
speech and later applied it to natural speech.

4.1. Data set

The experiments were conducted using a basic travel expres-
sion corpus (BTEC) [24]:

• Text corpus
We used a BTEC English-Japanese parallel text corpus
that consists of about 460k (BTEC1-4) training sen-
tences and 500 sentences in the test set.

• Synthesized speech corpus
Since corresponding speech utterances for the BTEC
parallel text corpus are not available, we used Google
text-to-speech synthesis [25] to generate a speech cor-
pus of the BTEC1 source language (about 160k utter-
ances). We used about 500 speech utterances in the
test set.

• Natural speech corpus
We also evaluated with natural speech. In this case,
we used the ATR English speech corpus [26] in our
experiments. The text material was based on the basic
travel expression domain. The speech corpus we used
consisted of American, British, and Australian (AUS)
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English accents with about 120k utterances spoken by
100 speakers (50 males, 50 females) for each accent.

The speech utterances were segmented into multiple
frames with a 25-ms window size and a 10-ms step size.
Then we extracted 23-dimension filter bank features using
Kaldi’s feature extractor [27] and normalized them to have
zero mean and unit variance.

4.2. Models

We further used the data to build a speech translation system
with attention-based ASR and MT systems. The ASR and
NMT share the same vocabulary (16,745 words). The di-
mensions of the distributed vector representation are smaller
than vocabulary size (the size depends on the model settings).
The hidden encoder and decoder layer consists of 500 nodes.
A batch size of 32 and a dropout of 0.1 were also applied.
For all systems, we used a learning rate of 0.0001 for the en-
coder and 0.0005 for the decoder and adopted Adam [28] to
all the models.

As we aim to have a neural speech translation that is ro-
bust against speech recognition errors without requiring sig-
nificant changes in the NMT structure. We constructed three
types of models that fit those requirements:

• Text-based machine translation system (upper-
bound)
This is a text-to-text translation model from the source
language to the target language. Here the BTEC
English-Japanese parallel text corpus is used to train
the model.

• Baseline speech translation
This speech-to-text translation model was created by
cascading the ASR (speech-to-text) in the source lan-
guage with a text-to-text MT module using 1-best
ASR outputs. First, we pre-trained the NMT with the
BTEC English-Japanese parallel text corpus and then
fine-tuned the NMT model with a one-hot vector pro-
vided from the ASR.

• Proposed speech translation
This speech-to-text translation model was created by
cascading ASR (speech-to-text) in the source language
with the text-to-text MT module using the ASR poste-
rior vectors. First, we pre-trained the ASR with the
speech of the source language and the NMT with the
BTEC English-Japanese parallel text corpus. After
that, we fine-tuned the parameter of both models by
jointly training, where the posterior vector of ASR out-
put is used as the NMT input.

Note that the ASR systems used for the baseline and the
proposed systems are the same. Also, all translation sys-
tems were tuned adequately, and the best model from training
epochs was selected for each system.

5. Result
5.1. Speech Recognition System

To simulate different degrees of ASR errors, we constructed
an ASR model using synthesized speech with different num-
bers of training epochs, resulting in four different models
with the following WERs: (1) System 1 (WER=15.17%),
System 2 (WER=12.34%), System 3 (WER=11.05%), and
System 4 (WER=8.82%). As a model that is trained with
natural speech, our performance achieved a 24.98% WER.

5.2. Translation System

As mentioned earlier, we compare three translation system:
one for standard text-based machine translation, one for
baseline speech translation with the cascade model, and one
for our proposed speech translation.

Figure 3: Translation quality given synthesized speech input

Figure 4: Translation quality given natural speech input

The quality of those translation systems with the input
of synthesized speech was evaluated using BLEU [29] and
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Figure 5: Attention matrix of text translation
Figure 6: Attention matrix of proposed method

shown in Fig. 3. Here System 1-4 represent of using different
ASR systems (1-4), respectively. The results show that the
better the ASR performance, the stronger the baseline cas-
cade model. Nevertheless, our proposed approach stable out-
performed the cascade model in all cases. The BLEU score
improved from 4.8 to 5.8 compared to the baseline model.

The proposed methods (System 3 and 4) exceed the text
translation because the recognition candidates included in the
posterior vector made it possible to correctly distinguish con-
fusing words in the word embedding of the text translation.
We will scrutinize this result in the next section.

Next, the quality of the speech translation systems using
natural speech was also evaluated using BLEU and shown in
Fig. 4. For the text translation, we provided the transcription
of the natural speech, which is different than the text used
in Fig. 3. This system used the ASR model where WER is
24.98%. Importantly, unlike several published ASR systems
using BTEC dataset, our ASR system only used the text tran-
scription of the training set for the language model. There-
fore, the ASR results reported in the paper could not reach
state-of-the-art ASR performance. Nevertheless, the transla-
tion results are still convincing as evidence of the proposed
framework’s effectiveness. The proposed method improved
the 4.3 BLEU score of the baseline model, confirming that
the proposed method is also effective for natural speech.

6. Discussion
Table 1 shows the sentence output examples in English-
Japanese translation: (1) with ASR error, and (2) without
ASR error. In the first example, to analyze the effect of ASR
error, we compare the sentence output of the proposed model
and the baseline (the cascase model). Here, ASR misrecog-
nized “shoe” as “station”. This error impacted the baseline
(cascade system), where it translated “station” as “eki” (the
correct translation for “shoe store” is “kutsuya”). How-

Table 1: Examples of sentences output: (1) with ASR error,
and (2) without ASR error.

Example 1: With ASR error
ASR reference Excuse me where is the closest shoe store?
ASR result Excuse me where is the closest station store?
Baseline Sumimasen ichiban chikai eki wa doko desuka?
Proposed Sumimasen ichiban chikai kutsuya wa doko desuka?
MT reference Sumimasen ichiban chikai kutsuya wa doko desuka?

Example 2: Without ASR error
ASR reference i d like to have a perm and a haircut please
ASR result i d like to have a perm and a haircut please
Text translation Paama to paama o onegai shitai nodesuga
Proposed Paama to katto o onegaishimasu
MT reference Paama to katto o onegaishimasu

Table 2: Posterior vector

Recognized Posterior
station 0.439
shoe 0.321
change 0.086
cashier 0.036
always 0.016

ever, in the proposed method, it was still able to translate it
to “kutsuya”. This might be because the ASR provided a
posterior vector in which the recognition candidate and each
a posteriori probability are weighted (Table 2). Here, “shoe”
information was still contained in the posterior vector with
only slightly lower probability than “station,” and based on
the context information, the machine translation translated
the word as “kutsuya.”

In the second example, ASR provided a correct sentence.
Here, we compare the sentence output of the proposed model
and the text translation. Since the contexts of “perm” and
“haircut” are close, the text translation mistakenly translated
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both “perm” and “haircut” into “paama” (Fig. 5 illustrates
the text translation’s alignment matrix). On the other hand,
having a posterior vector as the input in the proposed model
(see the attention matrix in Fig. 6) allowed NMT to correctly
distinguish confusing words by the word embedding of the
text translation.

7. Conclusions
In this research, a speech translation system that is robust
against speech recognition errors is obtained by using a pos-
terior vector, which is a normalized vector that expresses the
ambiguity of the speech recognition candidates, as the input
of an NMT engine. The lower the WER of the ASR model is,
the weaker the tendency of translation error becomes. Never-
theless, the whole test’s accuracy surpassed the baseline. As
a result, the posterior vector improved the BLEU score by 4.8
to 5.8 points over the baseline in the simulation experiment
and improved it by 4.3 BLEU points over the baseline in the
experiment using natural voice. By providing the probability
of the speech recognition output candidates in speech trans-
lation, an optimal input selection for NMT was made. In the
future, we will directly perform join training from ASR to
NMT.
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